53 resultados para 8-Channel Temperature Lance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Previous studies have found that high and cold temperatures increase the risk of childhood diarrhea. However, little is known about whether the within-day variation of temperature has any effect on childhood diarrhea. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear model was used to examine the relationship between diurnal temperature range and emergency department admissions for diarrhea among children under five years in Brisbane, from 1st January 2003 to 31st December 2009. Results There was a statistically significant relationship between diurnal temperature range and childhood diarrhea. The effect of diurnal temperature range on childhood diarrhea was the greatest at one day lag, with a 3% (95% confidence interval: 2%–5%) increase of emergency department admissions per 1°C increment of diurnal temperature range. Conclusion Within-day variation of temperature appeared to be a risk factor for childhood diarrhea. The incidence of childhood diarrhea may increase if climate variability increases as predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the influence of rectal temperature on the immune system during and after exercise. Ten well-trained male cyclists completed exercise trials (90 min cycling at 60% VO(2max) + 16.1 - km time trial) on three separate occasions: once in 18 degrees C and twice in 32 degrees C. Twenty minutes after the trials in 32 degrees C, the cyclists sat for approximately 20 min in cold water (14 degrees C) on one occasion, whereas on another occasion they sat at room temperature. Rectal temperature increased significantly during cycling in both conditions, and was significantly higher after cycling in 32 degrees C than in 18 degrees C (P < 0.05). Leukocyte counts increased significantly during cycling but did not differ between the conditions. The concentrations of serum interleukin (IL)-6, IL-8 and IL-10, plasma catecholamines, granulocyte-colony stimulating factor, myeloperoxidase and calprotectin increased significantly following cycling in both conditions. The concentrations of serum IL-8 (25%), IL-10 (120%), IL-1 receptor antagonist (70%), tumour necrosis factor-alpha (17%), plasma myeloperoxidase (26%) and norepinephrine (130%) were significantly higher after cycling in 32 degrees C than in 18 degrees C. During recovery from exercise in 32 degrees C, rectal temperature was significantly lower in response to sitting in cold water than at room temperature. However, immune changes during 90 min of recovery did not differ significantly between sitting in cold water and at room temperature. The greater rise in rectal temperature during exercise in 32 degrees C increased the concentrations of serum IL-8, IL-10, IL-1ra, TNF-alpha and plasma myeloperoxidase, whereas the greater decline in rectal temperature during cold water immersion after exercise did not affect immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel Lipped Channel Beams (LCB) with web openings are commonly used as floor joists and bearers in building structures. The shear behaviour of these beams is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs under a mid-span load with aspect ratios of 1.0 and 1.5 were developed and validated by comparing their results with test results. They were then used in a detailed parametric study to investigate the effects of various influential parameters. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative. Improved design equations were therefore proposed for the shear strength of LCBs with web openings based on both experimental and numerical results. This paper presents the details of finite element modelling of LCBs with web openings, validation of finite element models, and the development of improved shear design rules. The proposed shear design rules in this paper can be considered for inclusion in the future versions of cold-formed steel design codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of − 110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature ( < 13 °C) believed to be required for analgesic purposes. After ethics committee approval and written informed consent was obtained, 10 healthy males (26.5 ± 4.9 yr, 183.5 ± 6.0 cm, 90.7 ± 19.9 kg, 26.8 ± 5.0 kg/m 2 , 23.0 ± 9.3 % body fat; mean ± SD) participated in this randomised controlled crossover study. Skin temperature around the patellar region was assessed in both knees via non-contact, infrared thermal imaging and recorded pre-, immediately post-treatment and every 10 min thereafter for 60 min. Compared to baseline, average, minimum and maximum skin temperatures were significantly reduced (p < 0.001) immediately post-treatment and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Average and minimum skin temperatures were lower (p < 0.05) immediately after whole body cryotherapy (19.0 ± 0.9 ° C) compared to cold water immersion (20.5 ± 0.6 ° C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p < 0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives The aim of this study was to evaluate the role of cardiac K+ channel gene variants in families with atrial fibrillation (AF). Background The K+ channels play a major role in atrial repolarization but single mutations in cardiac K+ channel genes are infrequently present in AF families. The collective effect of background K+ channel variants of varying prevalence and effect size on the atrial substrate for AF is largely unexplored. Methods Genes encoding the major cardiac K+ channels were resequenced in 80 AF probands. Nonsynonymous coding sequence variants identified in AF probands were evaluated in 240 control subjects. Novel variants were characterized using patch-clamp techniques and in silico modeling was performed using the Courtemanche atrial cell model. Results Nineteen nonsynonymous variants in 9 genes were found, including 11 rare variants. Rare variants were more frequent in AF probands (18.8% vs. 4.2%, p < 0.001), and the mean number of variants was greater (0.21 vs. 0.04, p < 0.001). The majority of K+ channel variants individually had modest functional effects. Modeling simulations to evaluate combinations of K+ channel variants of varying population frequency indicated that simultaneous small perturbations of multiple current densities had nonlinear interactions and could result in substantial (>30 ms) shortening or lengthening of action potential duration as well as increased dispersion of repolarization. Conclusions Families with AF show an excess of rare functional K+ channel gene variants of varying phenotypic effect size that may contribute to an atrial arrhythmogenic substrate. Atrial cell modeling is a useful tool to assess epistatic interactions between multiple variants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A loss of function mutation in the TRESK K2P potassium channel (KCNK18), has recently been linked with typical familial migraine with aura. We now report the functional characterisation of additional TRESK channel missense variants identified in unrelated patients. Several variants either had no apparent functional effect, or they caused a reduction in channel activity. However, the C110R variant was found to cause a complete loss of TRESK function, yet is present in both sporadic migraine and control cohorts, and no variation in KCNK18 copy number was found. Thus despite the previously identified association between loss of TRESK channel activity and migraine in a large multigenerational pedigree, this finding indicates that a single non-functional TRESK variant is not alone sufficient to cause typical migraine and highlights the genetic complexity of this disorder. Migraine is a common, disabling neurological disorder with a genetic, environmental and in some cases hormonal component. It is characterized by attacks of severe, usually unilateral and throbbing headache, can be accompanied by nausea, vomiting and photophobia and is clinically divided into two main subtypes, migraine with aura (MA) when a migraine is accompanied by transient and reversible focal neurological symptoms and migraine without aura (MO)1. The multifactorial and clinical heterogeneity of the disorder have considerably hindered the identification of common migraine susceptibility genes and most of our current understanding comes from the studies of familial hemiplegic migraine (FHM), a rare monogenic autosomal dominant form of MA2. So far, the three susceptibility genes that have been convincingly identified in FHM families all encode ion channels or transporters: CACNA1A encoding the α1 subunit of the Cav2.1 calcium channel3, SCN1A encoding the Nav1.1 sodium channel4 and ATP1A2 encoding the α2 subunit of the Na+/K+ pump5. It is believed that mutations in these genes may lead to increased efflux of glutamate and potassium in the synapse and thereby cause migraine by rendering the brain more susceptible to cortical spreading depression (CSD)6 which is thought to play a role in initiating a migraine attack7,8. However, these genes have not to date been implicated in common forms of migraine9. Nevertheless, current opinion suggests that typical migraine, like FHM, is also disorder of neuronal excitability, ion homeostasis and neurotransmitter release10,11,12. Mutations in the SLC4A4 gene encoding the sodium-bicarbonate cotransporter NBCe1, have recently been implicated in several different forms of migraine13, and a variety of genes involved in glutamate homeostasis (PGCP, MTDH14 and LRP115) and a cation channel (TRPM8)15 have also recently been implicated in migraine via genome-wide association studies. Ion channels are therefore highly likely to play an important role in the pathogenesis of typical migraine. TRESK (KCNK18), is a member of the two-pore domain (K2P) family of potassium channels involved in the control of cellular electrical excitability16. Regulation of TRESK activity by the calcium-dependent phosphatase calcineurin17, as well as its expression in dorsal root ganglia (DRG)18 and trigeminal ganglia (TG)19,20 has led to a proposed role for this channel in a variety of pain pathways. In a recent study, a frameshift mutation (F139Wfsx24) in TRESK was identified in a large multigenerational pedigree where it co-segregated perfectly with typical MA and a significant genome-wide linkage LOD score of 3.0. Furthermore, functional analysis revealed that this mutation caused a complete loss of TRESK function and that the truncated subunit was also capable of down regulating wild-type channel function. This therefore highlighted KCNK18 as potentially important candidate gene and suggested that TRESK dysfunction might play a possible role in the pathogenesis of familial migraine with visual aura20. Additional screening for KCNK18 mutations in unrelated sporadic migraine and control cohorts also identified a number of other missense variants; R10G, A34V, C110R, S231P and A233V20. The A233V variant was found only in the control cohort, whilst A34V was identified in a single Australian migraine proband for which family samples were not available, but it was not detected in controls. By contrast, the R10G, C110R, and S231P variants were found in both migraineurs and controls in both cohorts. In this study, we have investigated the functional effect of these variants to further probe the potential association of TRESK dysfunction with typical migraine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of readily recoverable and reusable organic semiconducting Cu- and AgTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) microstructures decorated with Pt and Pd metallic nanoparticles is described for the effective reduction of CrVI ions in aqueous solution at room temperature using both formic acid and an environmentally friendly thiosulfate reductant. The M-TCNQ (M=metal) materials were formed by electrocrystallisation onto a glassy carbon surface followed by galvanic replacement in the presence of H2PtCl6 or PdCl2 to form the composite material. It was found that loading of the surface with nanoparticles could easily be controlled by changing the metal salt concentration. Significantly, the M-TCNQ substrates facilitated the formation of well-isolated metal nanoparticles on their surfaces under appropriate galvanic replacement conditions. The semiconductor–metal nanoparticle combination was also found to be critical to the catalyst performance, wherein the best-performing material was CuTCNQ modified by well-isolated Pt nanoparticles with both formic acid and thiosulfate ions as the reductant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research quantifies the lag effects and vulnerabilities of temperature effects on cardiovascular disease in Changsha—a subtropical climate zone of China. A Poisson regression model within a distributed lag nonlinear models framework was used to examine the lag effects of cold- and heat-related CVD mortality. The lag effect for heat-related CVD mortality was just 0–3 days. In contrast, we observed a statistically significant association with 10–25 lag days for cold-related CVD mortality. Low temperatures with 0–2 lag days increased the mortality risk for those ≥65 years and females. For all ages, the cumulative effects of cold-related CVD mortality was 6.6% (95% CI: 5.2%–8.2%) for 30 lag days while that of heat-related CVD mortality was 4.9% (95% CI: 2.0%–7.9%) for 3 lag days. We found that in Changsha city, the lag effect of hot temperatures is short while the lag effect of cold temperatures is long. Females and older people were more sensitive to extreme hot and cold temperatures than males and younger people.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Room-temperature, atmospheric-pressure plasma needle treatment is used to effectively minimize the adenovirus (AdV) infectivity as quantified by the dramatic reduction of its gene expression in HEK 293A primary human embryonic kidney cells studied by green fluorescent protein imaging. The AdV titer is reduced by two orders of magnitude within only 8 min of the plasma exposure. This effect is due to longer lifetimes and higher interaction efficacy of the plasma-generated reactive species in confined space exposed to the plasma rather than thermal effects commonly utilized in pathogen inactivation. This generic approach is promising for the next-generation anti-viral treatments and imunotherapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma sheath, nanostructure growth, and thermal models are used to describe carbon nanofiber (CNF) growth and heating in a low-temperature plasma. It is found that when the H2 partial pressure is increased, H atom recombination and H ion neutralization are the main mechanisms responsible for energy release on the catalyst surface. Numerical results also show that process parameters such as the substrate potential, electron temperature and number density mainly affect the CNF growth rate and plasma heating at low catalyst temperatures. In contrast, gas pressure, ion temperature, and the C2H2:H2 supply ratio affect the CNF growth at all temperatures. It is shown that plasma-related processes substantially increase the catalyst particle temperature, in comparison to the substrate and the substrate-holding platform temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optically transparent, highly oriented nanocrystalline AlN(002) films have been synthesized using a hybrid plasma enhanced chemical vapor deposition and plasma-assisted radio frequency (rf) magnetron sputtering process in reactive Ar+ N2 and Ar+ N2 + H2 gas mixtures at a low Si(111)/glass substrate temperature of 350 °C. The process conditions, such as the sputtering pressure, rf power, substrate temperature, and N2 concentration were optimized to achieve the desired structural, compositional, and optical characteristics. X-ray diffractometry reveals the formation of highly c -oriented AlN films at a sputtering pressure of 0.8 Pa. Field emission scanning electron microscopy suggests the uniform distribution of AlN grains over large surface areas and also the existence of highly oriented in the (002) direction columnar structures of a typical length ∼100-500 nm with an aspect ratio of ∼7-15. X-ray photoelectron and energy dispersive x-ray spectroscopy suggest that films deposited at a rf power of 400 W feature a chemically pure and near stoichiometric AlN. The bonding states of the AlN films have been confirmed by Raman and Fourier transform infrared spectroscopy showing strong E2 (high) and E1 transverse optical phonon modes. Hydrogenated AlN films feature an excellent optical transmittance of ∼80% in the visible region of the spectrum, promising for advanced optical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionization energy theory is used to calculate the evolution of the resistivity and specific heat curves with respect to different doping elements in the recently discovered superconducting pnictide materials. Electron-conduction mechanism in the pnictides above the structural transition temperature is explained unambiguously, which is also consistent with other strongly correlated materials, such as cuprates, manganites, titanates and magnetic semiconductors.