23 resultados para 769
Resumo:
Insulated rail joints (IRJs) are an integral part of the rail track signaling system and pose significant maintenance and replacement costs due to their low and fluctuating service lives. Failure occurs mainly in rail head region, bolt- holes of fishplates and web-holes of the rails. Propagation of cracks is influenced by the evolution of internal residual stresses in rails during rail manufacturing (hot-rolling, roller-straightening, and head-hardening process), and during service, particularly in heavy rail haul freight systems where loads are high. In this investigation, rail head accumulated residual stresses were analysed using neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Two ex-service two head-hardened rail joints damaged under different loading were examined and results were compared with those obtained from an unused rail joint reference sample in order to differentiate the stresses developed during rail manufacturing and stresses accumulated during rail service. Neutron diffraction analyses were carried out on the samples in longitudinal, transverse and vertical directions, and on 5mm thick sliceed samples cut by Electric Discharge Machining (EDM). For the rail joints from the service line, irrespective of loading conditions and in-service times, results revealed similar depth profiles of stress distribution. Evolution of residual stress fields in rails due to service was also accompanied by evidence of larger material flow based on reflected light and scanning electron microscopy studies. Stress evolution in the vicinity of rail ends was characterised by a compressive layer, approximately 5 mm deep, and a tension zone located approximately 5- 15mm below the surfaces. A significant variation of d0 with depth near the top surface was detected and was attributed to decarburization in the top layer induced by cold work. Stress distributions observed in longitudinal slices of the two different deformed rail samples were found to be similar. For the undeformed rail, the stress distributions obtained could be attributed to variations associated with thermo-mechanical history of the rail.
Resumo:
This paper examines the evaluation of BIM-enabled projects. It provides a critical review of the three main areas of measurement, namely technology, organization/people and process. Using two documented case studies of BIM implementation, the paper illustrates the benefits realized by project owners and contractors, and illustrates a lack of attention relative to contextual factors affecting the adoption and deployment of BIM. The paper has three main contributions. First, it identifies and discusses the lack of and difficulty surrounding standardized assessment methods for evaluating BIM-enabled projects. Second, it proposes a conceptual model that includes contextual attributes and demonstrates how the proposed framework reaches beyond simple evaluation to encompass the documentation of BIM’s benefits, lessons learned, challenges and adopted solutions. Third, it shows how the framework can account for existing business processes, organizational process assets, and enterprise level factors. The paper aims to provide a conceptual basis for evaluation and a starting point for benchmarking.
Resumo:
Drying has been extensively used as a food preservation procedure. The longer life attained by drying is however accompanied by huge energy consumption and deterioration of quality. Moisture diffusivity is an important factor that is considered essential to understand for design, analysis, and optimization of drying processes for food and other materials. Without an accurate value of moisture diffusivity, drying kinetics, energy consumption, quality attributes such as shrinkage, texture, and microstructure cannot be predicted properly. However, moisture diffusivities differ due to variation of composition and microstructure of foodstuff and drying variables. For a particular food, it changes with many factors including moisture content, water holding capacity, process variables and physiochemical attributes of food. Published information on moisture diffusivities of banana is inadequate and sometimes inconsistent due to lack of precise repeatable analysis techniques. In this work, the effective moisture diffusivity of banana was determined by Thermogravimetric Analysis (TGA), which ensures precise measurements and reproduction of experiments. A TGA Q500 V20.13 Build 39 was deployed to obtain the drying curve of the food material. It was found that effective moisture diffusivity ranged from 6.63 x10-10 to 1.03 x10-9 and 1.34 x10-10 to 6.60 x10-10 for isothermal at 70 0C and non-isothermal process respectively.These values are consistent with the value of moisture diffusivity found in the literature.
Resumo:
Tourist individual differences, such as levels of knowledge, are increasingly recognized as influencing how people respond to information. However, little research has examined the role of consumer knowledge on responses to different components of cruise advertising information. Using input from an industry panel combined with insight and measures from the literature, the results of this field experiment show that consumer knowledge interacts with two aspects of advertising—testimonial expertise and advertising copy—to influence purchase intentions towards a cruise. The results offer important implications for researchers and tourism managers regarding how consumer knowledge influences which types of advertising information are most persuasive to consumers. Results also indicate that expert consumers have more favorable attitudes than novice consumers towards cruise advertising.
Resumo:
The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 x 10(-8)) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ~115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits.
Resumo:
In this report, we describe a simple correction for multiple testing of single-nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with each other, on the basis of the spectral decomposition (SpD) of matrices of pairwise LD between SNPs. This method provides a useful alternative to more computationally intensive permutation tests. Additionally, output from SNPSpD includes eigenvalues, principal-component coefficients, and factor "loadings" after varimax rotation, enabling the selection of a subset of SNPs that optimize the information in a genomic region.