26 resultados para 734


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify specific markers of rectovaginal endometriotic nodule vasculature, highly enriched preparations of vascular endothelial cells and pericytes were obtained from endometriotic nodules and control endometrial and myometrial tissue by laser capture microdissection (LCM), and gene expression profiles were screened by microarray analysis. Of the 18 400 transcripts on the arrays, 734 were significantly overexpressed in vessels from fibromuscular tissue and 923 in vessels from stromal tissue of endometriotic nodules, compared with vessels dissected from control tissues. The most frequently expressed transcripts included known endothelial cell-associated genes, as well as transcripts with little or no previous association with vascular cells. The higher expression in blood vessels was further corroborated by immunohistochemical staining of six potential markers, five of which showed strong expression in pericytes. The most promising marker was matrix Gla protein, which was found to be present in both glandular epithelial cells and vascular endothelial cells of endometriotic lesions, although it was barely expressed at all in normal endometrium. LCM, combined with microarray analysis, constitutes a powerful tool for mapping the transcriptome of vascular cells. After immunohistochemical validation, markers of vascular endothelial and perivascular cells from endometriotic nodules could be identified, which may provide targets to improve early diagnosis or to selectively deliver therapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population genetic studies of freshwater invertebrate taxa in New Zealand and South America are currently few despite the geologically and climatically dynamic histories of these regions. The focus of our study was a comparison of the influence on realized dispersal of 2 closely related nonbiting midges (Chironomidae) of population fragmentation on these separated austral land masses. We used a 734-base pair (bp) fragment of cytochrome c oxidase subunit I (COI) to investigate intraspecific genetic structure in Naonella forsythi Boothroyd in New Zealand and Ferringtonia patagonica Edwards in Patagonia. We proposed hypotheses about their potential dispersal and, hence, expected patterns of genetic structure in these 2 species based on published patterns for the closely related Australian taxon Echinocladius martini Cranston. Genetic structure revealed for both N. forsythi and F. patagonica was characterized by several highly divergent (2.0–10.5%) lineages of late Miocene–Pliocene age within each taxon that were not geographically localized. Many were distributed widely. This pattern differed greatly from population structure in E. martini, which was typified by much greater endemicity of divergent genetic lineages. Nevertheless, diversification of lineages in all 3 taxa appeared to be temporally congruent with the onset of late Miocene glaciations in the southern hemisphere that may have driven fragmentation of suitable habitat, promoting isolation of populations and divergence in allopatry. We argue that differences in realized dispersal post-isolation may be the result of differing availability of suitable habitat in interglacial periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insuffcient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and maintenance of large and complex ontologies are often time-consuming and error-prone. Thus, automated ontology learning and revision have attracted intensive research interest. In data-centric applications where ontologies are designed or automatically learnt from the data, when new data instances are added that contradict to the ontology, it is often desirable to incrementally revise the ontology according to the added data. This problem can be intuitively formulated as the problem of revising a TBox by an ABox. In this paper we introduce a model-theoretic approach to such an ontology revision problem by using a novel alternative semantic characterisation of DL-Lite ontologies. We show some desired properties for our ontology revision. We have also developed an algorithm for reasoning with the ontology revision without computing the revision result. The algorithm is efficient as its computational complexity is in coNP in the worst case and in PTIME when the size of the new data is bounded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The minerals clinotyrolite and fuxiaotuite are discredited in terms of the mineral tangdanite. The mixed anion mineral tangdanite Ca2Cu9(AsO4)4(SO4)0.5(OH)9 9H2O has been studied using a combination of Raman and infrared spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. These bands are assigned to water and hydroxyl stretching vibrations. Two intense Raman bands at 837 and approximately 734 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. Infrared bands at 1023 cm−1 are assigned to the (SO4)2− ν1 symmetric stretching mode, and infrared bands at 1052, 1110 and 1132 cm−1 assigned to (SO4)2− ν3 antisymmetric stretching modes, confirming the presence of the sulphate anion in the tangdanite structure. Raman bands at 593 and 628 cm−1 are attributed to the (SO4)2− ν4 bending modes. Low-intensity Raman bands found at 457 and 472 cm−1 are assigned to the (AsO4)3− ν2 bending modes. A comparison is made with the previously obtained spectral data on the discredited mineral clinotyrolite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have undertaken a study of the tellurite mineral sonorite using electron microscopy with EDX combined with vibrational spectroscopy. Chemical analysis shows a homogeneous composition, with predominance of Te, Fe, Ce and In with minor amounts of S. Raman spectroscopy has been used to study the mineral sonoraite an examples of group A(XO3), with hydroxyl and water units in the mineral structure. The free tellurite ion has C3v symmetry and four modes, 2A1 and 2E. An intense Raman band at 734 cm−1 is assigned to the ν1 (TeO3)2− symmetric stretching mode. A band at 636 cm−1 is assigned to the ν3 (TeO3)2− antisymmetric stretching mode. Bands at 350 and 373 cm−1 and the two bands at 425 and 438 cm−1 are assigned to the (TeO3)2−ν2 (A1) bending mode and (TeO3)2−ν4 (E) bending modes. The sharp band at 3283 cm−1 assigned to the OH stretching vibration of the OH units is superimposed upon a broader spectral profile with Raman bands at 3215, 3302, 3349 and 3415 cm−1 are attributed to water stretching bands. The techniques of Raman and infrared spectroscopy are excellent for the study of tellurite minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The caudate is a subcortical brain structure implicated in many common neurological and psychiatric disorders. To identify specific genes associated with variations in caudate volume, structural magnetic resonance imaging and genome-wide genotypes were acquired from two large cohorts, the Alzheimer's Disease NeuroImaging Initiative (ADNI; N=734) and the Brisbane Adolescent/Young Adult Longitudinal Twin Study (BLTS; N=464). In a preliminary analysis of heritability, around 90% of the variation in caudate volume was due to genetic factors. We then conducted genome-wide association to find common variants that contribute to this relatively high heritability. Replicated genetic association was found for the right caudate volume at single-nucleotide polymorphism rs163030 in the ADNI discovery sample (P=2.36 × 10 -6) and in the BLTS replication sample (P=0.012). This genetic variation accounted for 2.79 and 1.61% of the trait variance, respectively. The peak of association was found in and around two genes, WDR41 and PDE8B, involved in dopamine signaling and development. In addition, a previously identified mutation in PDE8B causes a rare autosomal-dominant type of striatal degeneration. Searching across both samples offers a rigorous way to screen for genes consistently influencing brain structure at different stages of life. Variants identified here may be relevant to common disorders affecting the caudate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three fullerene isoindoline nitroxides N-methyl-3,4-fulleropyrrolidine-2-spiro-5′- (1′,1′,3′,3′-tetramethylisoindolin-2′-yloxyl), (C60-(TMIO)m, and C70-(TMIO)n) were synthesized by the covalent bonding of 5-formyl-1,1,3,3-tetramethyl isoindolin-2-yloxyl to the fullerenes C60 and C70. Significantly, the X-ray photoelectron spectra indicated the characteristic N 1s signals of NO. at 402 eV. The atomic force microscope morphologies showed that the average particle sizes of C60-(TMIO)m and C70-(TMIO)n were 38 and 15 nm. The electrochemical experiments indicated that fullerene bound isoindoline nitroxides retained similar electrochemical properties and redox reaction mechanisms as the parent nitroxides. The electron paramagnetic resonance spectra of the fullerene isoindoline nitroxides all exhibited the hyperfine splittings and characteristic spectra of tetramethyl isoindoline nitroxides, with typical nitroxide g-values and nitrogen isotropic hyperfine coupling constants. Therefore, these fullerene isoindoline nitroxides may be considered as potential candidates for novel biological spin probes using electron paramagnetic resonance spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stable free radical 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) has proved to be very suitable for use as a spin probe for a number of applications. Because it is soluble mainly in non-polar liquids, there is a need for new derivatives that can be used in a variety of environments. This has been done by introducing substituents in the 5-position of the aromatic ring, namely carboxyl (CTMIO), trimethylamino (TMTMIOI) and sodium sulphonate (NaTMIOS). An accurate ESR method was developed for the measurement of partition coefficients in n-octanol–water. For comparison purposes the method was also applied to some Tempo derivatives. The effect of temperature on the rotational correlation times and the nitrogen-14 hyperfine coupling constant of some of the spin probes was investigated. There is evidence for dimerization of CTMIO to form a biradical

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure and W-doped ZnO thin films were obtained using magnetron sputtering at working pressures of 0.4 Pa and 1.33 Pa. The films were deposited on glass and alumina substrates at room temperature and subsequently annealed at 400oC for 1 hour in air. The effects of pressure and W-doping on the structure, chemical, optical and electronic properties of the ZnO films for gas sensing were examined. From AFM, the doped film deposited at higher pressure (1.33 Pa) has spiky morphology with much lower grain density and porosity compared to the doped film deposited at 0.4 Pa. The average gain size and roughness of the annealed films were estimated to be 65 nm and 2.2 nm, respectively with slightly larger grain size and roughness appeared in the doped films. From XPS the films deposited at 1.33 Pa favored the formation of adsorbed oxygen on the film surface and this has been more pronounced in the doped film which created active sites for OH adsorption. As a consequence the W-doped film deposited at 1.33 Pa was found to have lower oxidation state of W (35.1 eV) than the doped film deposited at 0.4 Pa (35.9 eV). Raman spectra indicated that doping modified the properties of the ZnO film and induced free-carrier defects. The transmittance of the samples also reveals an enhanced free-carrier density in the W-doped films. The refractive index of the pure film was also found to increase from 1.7 to 2.2 after W-doping whereas the optical band gap only slightly increased. The W-doped ZnO film deposited at 0.4 Pa appeared to have favorable properties for enhanced gas sensing. This film showed significantly higher sensing performance towards 5-10 ppm NO2 at lower operating temperature of 150oC most dominantly due to increased free-carrier defects achieved by W-doping.