279 resultados para 3d Reconstruction
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.
The backfilled GEI : a cross-capture modality gait feature for frontal and side-view gait recognition
Resumo:
In this paper, we propose a novel direction for gait recognition research by proposing a new capture-modality independent, appearance-based feature which we call the Back-filled Gait Energy Image (BGEI). It can can be constructed from both frontal depth images, as well as the more commonly used side-view silhouettes, allowing the feature to be applied across these two differing capturing systems using the same enrolled database. To evaluate this new feature, a frontally captured depth-based gait dataset was created containing 37 unique subjects, a subset of which also contained sequences captured from the side. The results demonstrate that the BGEI can effectively be used to identify subjects through their gait across these two differing input devices, achieving rank-1 match rate of 100%, in our experiments. We also compare the BGEI against the GEI and GEV in their respective domains, using the CASIA dataset and our depth dataset, showing that it compares favourably against them. The experiments conducted were performed using a sparse representation based classifier with a locally discriminating input feature space, which show significant improvement in performance over other classifiers used in gait recognition literature, achieving state of the art results with the GEI on the CASIA dataset.
Resumo:
The ability to automate forced landings in an emergency such as engine failure is an essential ability to improve the safety of Unmanned Aerial Vehicles operating in General Aviation airspace. By using active vision to detect safe landing zones below the aircraft, the reliability and safety of such systems is vastly improved by gathering up-to-the-minute information about the ground environment. This paper presents the Site Detection System, a methodology utilising a downward facing camera to analyse the ground environment in both 2D and 3D, detect safe landing sites and characterise them according to size, shape, slope and nearby obstacles. A methodology is presented showing the fusion of landing site detection from 2D imagery with a coarse Digital Elevation Map and dense 3D reconstructions using INS-aided Structure-from-Motion to improve accuracy. Results are presented from an experimental flight showing the precision/recall of landing sites in comparison to a hand-classified ground truth, and improved performance with the integration of 3D analysis from visual Structure-from-Motion.
Resumo:
A large number of methods have been published that aim to evaluate various components of multi-view geometry systems. Most of these have focused on the feature extraction, description and matching stages (the visual front end), since geometry computation can be evaluated through simulation. Many data sets are constrained to small scale scenes or planar scenes that are not challenging to new algorithms, or require special equipment. This paper presents a method for automatically generating geometry ground truth and challenging test cases from high spatio-temporal resolution video. The objective of the system is to enable data collection at any physical scale, in any location and in various parts of the electromagnetic spectrum. The data generation process consists of collecting high resolution video, computing accurate sparse 3D reconstruction, video frame culling and down sampling, and test case selection. The evaluation process consists of applying a test 2-view geometry method to every test case and comparing the results to the ground truth. This system facilitates the evaluation of the whole geometry computation process or any part thereof against data compatible with a realistic application. A collection of example data sets and evaluations is included to demonstrate the range of applications of the proposed system.
Resumo:
In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis.
Resumo:
We present a pole inspection system for outdoor environments comprising a high-speed camera on a vertical take-off and landing (VTOL) aerial platform. The pole inspection task requires a vehicle to fly close to a structure while maintaining a fixed stand-off distance from it. Typical GPS errors make GPS-based navigation unsuitable for this task however. When flying outdoors a vehicle is also affected by aerodynamics disturbances such as wind gusts, so the onboard controller must be robust to these disturbances in order to maintain the stand-off distance. Two problems must therefor be addressed: fast and accurate state estimation without GPS, and the design of a robust controller. We resolve these problems by a) performing visual + inertial relative state estimation and b) using a robust line tracker and a nested controller design. Our state estimation exploits high-speed camera images (100Hz) and 70Hz IMU data fused in an Extended Kalman Filter (EKF). We demonstrate results from outdoor experiments for pole-relative hovering, and pole circumnavigation where the operator provides only yaw commands. Lastly, we show results for image-based 3D reconstruction and texture mapping of a pole to demonstrate the usefulness for inspection tasks.
Resumo:
The solutions proposed in this thesis contribute to improve gait recognition performance in practical scenarios that further enable the adoption of gait recognition into real world security and forensic applications that require identifying humans at a distance. Pioneering work has been conducted on frontal gait recognition using depth images to allow gait to be integrated with biometric walkthrough portals. The effects of gait challenging conditions including clothing, carrying goods, and viewpoint have been explored. Enhanced approaches are proposed on segmentation, feature extraction, feature optimisation and classification elements, and state-of-the-art recognition performance has been achieved. A frontal depth gait database has been developed and made available to the research community for further investigation. Solutions are explored in 2D and 3D domains using multiple images sources, and both domain-specific and independent modality gait features are proposed.
Resumo:
Study design Retrospective validation study. Objectives To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1–T12 and T4–T12 kyphosis, L1–L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.
Resumo:
Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spatiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed as a matrix normal distribution, composed of separable and compact row and column covariances. We relate the marginals of the distribution to the shape, trajectory, and shape-trajectory models of prior art. When the marginal shape distribution is not available from training data, we show how placing a hierarchical prior over shapes results in a convex MAP solution in terms of the trace-norm. The matrix normal distribution, fit to a single sequence, outperforms state-of-the-art methods at reconstructing 3D motion data in the presence of significant data loss, while providing covariance estimates of the imputed points.
Resumo:
A complete series of cross-sectional computed tomography (CT) scans were obtained of a mummy of an Egyptian priestess, Tjenmutengebtiu, (Jeni), who lived in the twenty-second Dynasty (c. 945-715 BC). The purpose of this joint British Museum and St. Thomas’ Hospital project was effectively to ‘unwrap’ a mummy using cross-sectional X-rays. Jeni is encased in a beautifully decorated anthropomorphic cartonnage coffin. The head and neck were scanned with 2mm slices, the teeth with 1mm slices and the rest of the body with 4 mm slices, a 512 x 512 matrix was used. The 2D CT images, and 3D surface reconstruction’s, demonstrate many features of the embalming techniques and funerary customs of the XXII Dynasty. The presence of cloth protruding from the nasal cavities into the otherwise empty cranial cavity indicates that the brain was extracted via the nose. The remains of the heart can be seen as well as four organ packs corresponding to the mummified and repackaged lungs, intestines, stomach and liver. Each of the organ packs encloses a wax figurine representing one of the four sons of Horus. The teeth are in very good condition with little signs of wear, which, considering the gritty diet of the Egyptians, indicates that Jeni must have been very young when she died. A young age of death is also suggested by analysis of the shape of the molar teeth. The body is generally in very good condition demonstrating the consummate skill of the twenty-second Dynasty embalmers.
Resumo:
Eigen-based techniques and other monolithic approaches to face recognition have long been a cornerstone in the face recognition community due to the high dimensionality of face images. Eigen-face techniques provide minimal reconstruction error and limit high-frequency content while linear discriminant-based techniques (fisher-faces) allow the construction of subspaces which preserve discriminatory information. This paper presents a frequency decomposition approach for improved face recognition performance utilising three well-known techniques: Wavelets; Gabor / Log-Gabor; and the Discrete Cosine Transform. Experimentation illustrates that frequency domain partitioning prior to dimensionality reduction increases the information available for classification and greatly increases face recognition performance for both eigen-face and fisher-face approaches.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
This paper considers the problem of reconstructing the motion of a 3D articulated tree from 2D point correspondences subject to some temporal prior. Hitherto, smooth motion has been encouraged using a trajectory basis, yielding a hard combinatorial problem with time complexity growing exponentially in the number of frames. Branch and bound strategies have previously attempted to curb this complexity whilst maintaining global optimality. However, they provide no guarantee of being more efficient than exhaustive search. Inspired by recent work which reconstructs general trajectories using compact high-pass filters, we develop a dynamic programming approach which scales linearly in the number of frames, leveraging the intrinsically local nature of filter interactions. Extension to affine projection enables reconstruction without estimating cameras.