83 resultados para 2Q36 DELETION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice grassy stunt virus is a member of the genus Tenuivirus, is persistently transmitted by a brown planthopper, and has occurred in rice plants in South, Southeast, and East Asia (similar to North and South America). We determined the complete nucleotide (nt) sequences of RNAs 1 (9760 nt), 2 (4069 nt), 3 (3127 nt), 4 (2909 nt), 5 (2704 nt), and 6 (2590 nt) of a southern Philippine isolate from South Cotabato and compared them with those of a northern Philippine isolate from Laguna (Toriyama et al., 1997, 1998). The numbers of nucleotides in the terminal untranslated regions and open reading frames were identical between the two isolates except for the 5′ untranslated region of the complementary strand of RNA 4. Overall nucleotide differences between the two isolates were only 0.08% in RNA 1, 0.58% in RNA 4, and 0.26% in RNA 5, whereas they were 2.19% in RNA 2, 8.38% in RNA 3, and 3.63% in RNA 6. In the intergenic regions, the two isolates differed by 9.12% in RNA 2, 11.6% in RNA 3, and 6.86% in RNA 6 with multiple consecutive nucleotide deletion/insertions, whereas they differed by only 0.78% in RNA 4 and 0.34% in RNA 5. The nucleotide variation in the intergenic region of RNA 6 within the South Cotabato isolate was only 0.33%. These differences in accumulation of mutations among individual RNA segments indicate that there was genetic reassortment in the two geographical isolates; RNAs 1, 4, and 5 of the two isolates came from a common ancestor, whereas RNAs 2, 3, and 6 were from two different ancestors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PCR-based cancer diagnosis requires detection of rare mutations in k- ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work on factor IX suggests that this assumption is invalid for one case of near- sequence identity. To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For k-ras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerase. Mutant and wild-type segments of the factor V, cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CDKN2 gene, encoding the cyclin dependent kinase inhibitor p16, is a tumour suppressor gene involved in melanoma and maps to chromosome band 9p22. Mutations or interstitial deletions of this gene have been found both in the germline of familial melanoma cases and somatically in melanoma cell lines. Previous mutation analyses of melanoma cell lines have indicated a high frequency of C:G to T:A transitions, with all of these mutations occurring at dipyrimidine sites. Including three melanoma cell lines carrying tandem CC to TT mutations, the spectrum of mutations so far reported indicates a possible role for u.v. radiation in the mutagenesis of this gene in some tumours. To further examine this hypothesis we have characterised mutations of the CDKN2 gene in 30 melanoma cell lines. Nineteen lines carried complete or partial homozygous deletions of the gene. Of the remaining cell lines, eight were shown by direct sequencing of PCR products from exon 1 and exon 2 to carry a total of nine different mutations of CDKN2. Two cell lines carried tandem CC to TT mutations and a high rate of C:G to T:A transitions was observed. This study provides further evidence for the role of u.v. light in the genesis of melanoma, with one target being the CDKN2 tumour suppressor gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CDKN2 gene, encoding the cyclin-dependent kinase inhibitor p16, is a tumour suppressor gene that maps to chromosome band 9p21-p22. The most common mechanism of inactivation of this gene in human cancers is through homozygous deletion; however, in a smaller proportion of tumours and tumour cell lines intragenic mutations occur. In this study we have compiled a database of over 120 published point mutations in the CDKN2 gene from a wide variety of tumour types. A further 50 deletions, insertions, and splice mutations in CDKN2 have also been compiled. Furthermore, we have standardised the numbering of all mutations according to the full-length 156 amino acid form of p16. From this study we are able to define several hot spots, some of which occur at conserved residues within the ankyrin domains of p16. While many of the hotspots are shared by a number of cancers, the relative importance of each position varies, possibly reflecting the role of different carcinogens in the development of certain tumours. As reported previously, the mutational spectrum of CDKN2 in melanomas differs from that of internal malignancies and supports the involvement of UV in melanoma tumorigenesis. Notably, 52% of all substitutions in melanoma-derived samples occurred at just six nucleotide positions. Nonsense mutations comprise a comparatively high proportion of mutations present in the CDKN2 gene, and possible explanations for this are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CDKN2A gene maps to chromosome 9p21-22 and is responsible for melanoma susceptibility in some families. Its product, p16, binds specifically to CDK4 and CDK6 in vitro and in vivo, inhibiting their kinase activity. CDKN2A is homozygously deleted or mutated in a large proportion of tumor cell lines and some primary tumors, including melanomas. The aim of this study was to investigate the involvement of CDKN2A and elucidate the mechanisms of p16 inactivation in a panel of 60 cell lines derived from sporadic melanomas. Twenty-six (43%) of the melanoma lines were homozygously deleted for CDKN2A, and an additional 15 (25%) lines carried missense, nonsense, or frameshift mutations. All but one of the latter group were shown by microsatellite analysis to be hemizygous for the region of 9p surrounding CDKN2A. p16 was detected by Western blotting in only five of the cell lines carrying mutations. Immunoprecipitation of p16 in these lines, followed by Western blotting to detect the coprecipitation of CDK4 and CDK6, revealed that p16 was functionally compromised in all cell lines but the one that carried a heterozygous CDKN2A mutation. In the remaining 19 lines that carried wild-type CDKN2A alleles, Western blot analysis and immunoprecipitation indicated that 11 cell lines expressed a wild-type protein. Northern blotting was performed on the remaining eight cell lines and revealed that one cell line carried an aberrantly sized RNA transcript, and two other cell lines failed to express RNA. The promoter was found to be methylated in five cell lines that expressed CDKN2A transcript but not p16. Presumably, the message seen by Northern blotting in these cell lines is the result of cross-hybridization of the total cDNA probe with the exon 1beta transcript. Microsatellite analysis revealed that the majority of these cell lines were hemi/homozygous for the region surrounding CDKN2A, indicating that the wild-type allele had been lost. In the 11 cell lines that expressed functional p16, microsatellite analysis revealed loss of heterozygosity at the markers immediately surrounding CDKN2A in five cases, and the previously characterized R24C mutation of CDK4 was identified in one of the remaining 6 lines. These data indicate that 55 of 60 (92%) melanoma cell lines demonstrated some aberration of CDKN2A or CDK4, thus suggesting that this pathway is a primary genetic target in melanoma development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of small-cell lung cancers (SCLCs) express p16 but not pRb. Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC and MCC, we wished to determine if this was also the case in MCC. Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and 1 on 9q. No loss of heterozygosity (LOH) was seen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p. Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined. Half of all informative cases had LOH at D9S168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168. A second region (IFNA-D9S126) showed LOH in 10 (44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all 11 tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p14(ARF) antibody. These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 9p involved in the development of melanoma. Although LOH at 9p has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 9p. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations by single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele. Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748 the markers closest to CDKN2A. Of the remaining 11 tumors with LOH 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion. This report supports the conclusions of previous studies that a least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deletions detected in cytogenetic and loss of heterozygosity (LOH) studies indicate that at least one tumour suppressor gene maps to the long arm of chromosome 10. Previous deletion mapping studies have observed LOH on 10q in about 30% of melanomas analysed. The PTEN gene, mapping to chromosome band 10q23.3, encodes a protein with both lipid and protein phosphatase activity. Somatic mutations and deletions in have been detected in a variety of cell lines and tumours, including melanoma samples. We performed mutation analyses and extensive allelic loss studies to investigate the role this gene plays in melanoma pathogenesis. We found that a total of 34 out of 57 (60%) melanoma cell lines carried hemizygous deletions of chromosome 10q encompassing the PTEN locus. A further three cell lines carried smaller deletions excluding PTEN. Inactivation of both PTEN alleles by exon-specific homozygous deletion or mutation was observed in 13 out of 57 (23%) melanoma cell lines. The mutation spectrum observed does not indicate an important role for ultraviolet radiation in the genesis of these mutations, and evidence from three cell lines supports the acquisition of PTEN aberrations in culture. Ten out of 49 (20%) matched melanoma tumour/normal samples harboured hemizygous deletions of either the whole chromosome or most of the long arm. Mutations within were detected in only one of the 10 tumours demonstrating LOH at 10q23 that were analysed. These results suggest that PTEN inactivation may be important for the propagation of melanoma cells in culture, and that another chromosome 10 tumour suppressor gene may be important for melanoma pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To gain insight into melanoma pathogenesis, we characterized an insertional mouse mutant, TG3, that is predisposed to develop multiple melanomas. Physical mapping identified multiple tandem insertions of the transgene into intron 3 of Grm1 (encoding metabotropic glutamate receptor 1) with concomitant deletion of 70 kb of intronic sequence. To assess whether this insertional mutagenesis event results in alteration of transcriptional regulation, we analyzed Grm1 and two flanking genes for aberrant expression in melanomas from TG3 mice. We observed aberrant expression of only Grm1. Although we did not detect its expression in normal mouse melanocytes, Grm1 was ectopically expressed in the melanomas from TG3 mice. To confirm the involvement of Grm1 in melanocytic neoplasia, we created an additional transgenic line with Grm1 expression driven by the dopachrome tautomerase promoter. Similar to the original TG3, the Tg(Grm1)EPv line was susceptible to melanoma. In contrast to human melanoma, these transgenic mice had a generalized hyperproliferation of melanocytes with limited transformation to fully malignant metastasis. We detected expression of GRM1 in a number of human melanoma biopsies and cell lines but not in benign nevi and melanocytes. This study provides compelling evidence for the importance of metabotropic glutamate signaling in melanocytic neoplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, attempts to regenerate a complete tooth, including the critical periodontal tissues associated with the tooth root, have not been successful. Controversy still exists regarding the origin of the cell source for cellular cementum (epithelial or mesenchymal). This disagreement may be partially due to a lack of understanding of the events leading to the initiation and development of the tooth roots and supportive tissues, such as the cementum. Osterix (OSX) is a transcriptional factor essential for osteogenesis, but its role in cementogenesis has not been addressed. In the present study, we first documented a close relationship between the temporal- and spatial-expression pattern of OSX and the formation of cellular cementum. We then generated 3.6 Col 1-OSX transgenic mice, which displayed accelerated cementum formation vs. WT controls. Importantly, the conditional deletion of OSX in the mesenchymal cells with two different Cre systems (the 2.3 kb Col 1 and an inducible CAG-CreER) led to a sharp reduction in cellular cementum formation (including the cementum mass and mineral deposition rate) and gene expression of dentin matrix protein 1 (DMP1) by cementocytes. However, the deletion of the OSX gene after cellular cementum formed did not alter the properties of the mature cementum as evaluated by backscattered SEM and resin-cast SEM. Transient transfection of Osx in the cementoblasts in vitro significantly inhibited cell proliferation and increased cell differentiation and mineralization. Taken together, these data support 1) the mesenchymal origin of cellular cementum (from PDL progenitor cells); 2) the vital role of OSX in controlling the formation of cellular cementum; and 3) the limited remodeling of cellular cementum in adult mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Milk proteins are susceptible to chemical changes during processing and storage. We used proteomic tools to analyse bovine αS1-casein in UHT milk. 2-D gels of freshly processed milk αS1-casein was presented as five or more spots due to genetic polymorphism and variable phosphorylation. MS analysis after phosphopeptide enrichment allowed discrimination between phosphorylation states and genetic variants. We identified a new alternatively-spliced isoform with a deletion of exon 17, producing a new C-terminal sequence, K164SQVNSEGLHSYGL177, with a novel phosphorylation site at S174. Storage of UHT milk at elevated temperatures produced additional, more acidic αS1-casein spots on the gels and decreased the resolution of minor forms. MS analysis indicated that non-enzymatic deamidation and loss of the N-terminal dipeptide were the major contributors to the changing spot pattern. These results highlight the important role of storage temperature in the stability of milk proteins and the utility of proteomic techniques for analysis of proteins in food.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main cis-acting control regions for replication of the single-stranded DNA genome of maize streak virus (MSV) are believed to reside within an approximately 310 nt long intergenic region (LIR). However, neither the minimum LIR sequence required nor the sequence determinants of replication specificity have been determined experimentally. There are iterated sequences, or iterons, both within the conserved inverted-repeat sequences with the potential to form a stem-loop structure at the origin of virion-strand replication, and upstream of the rep gene TATA box (the rep-proximal iteron or RPI). Based on experimental analyses of similar iterons in viruses from other geminivirus genera and their proximity to known Rep-binding sites in the distantly related mastrevirus wheat dwarf virus, it has been hypothesized that the iterons may be Rep-binding and/or -recognition sequences. Here, a series of LIR deletion mutants was used to define the upper bounds of the LIR sequence required for replication. After identifying MSV strains and distinct mastreviruses with incompatible replication-specificity determinants (RSDs), LIR chimaeras were used to map the primary MSV RSD to a 67 nt sequence containing the RPI. Although the results generally support the prevailing hypothesis that MSV iterons are functional analogues of those found in other geminivirus genera, it is demonstrated that neither the inverted-repeat nor RPI sequences are absolute determinants of replication specificity. Moreover, widely divergent mastreviruses can trans-replicate one another. These results also suggest that sequences in the 67 nt region surrounding the RPI interact in a sequence-specific manner with those of the inverted repeat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial siderophores may enhance pathogenicity by scavenging iron, but their expression has been proposed to exert a substantial metabolic cost. Here we describe a combined metabolomic-genetic approach to determine how mutations affecting the virulence-associated siderophore yersiniabactin affect the Escherichia coli primary metabolome. Contrary to expectations, we did not find yersiniabactin biosynthesis to correspond to consistent metabolomic shifts. Instead, we found that targeted deletion of ybtU or ybtA, dissimilar genes with similar roles in regulating yersiniabactin expression, were associated with a specific shift in arginine pathway metabolites during growth in minimal media. This interaction was associated with high arginine levels in the model uropathogen Escherichia coli UTI89 compared to its ybtU and ybtA mutants and the K12 strain MG1655, which lacks yersiniabactin-associated genes. Because arginine is not a direct yersiniabactin biosynthetic substrate, these findings show that virulence-associated secondary metabolite systems may shape bacterial primary metabolism independently of substrate consumption