36 resultados para 1260
Resumo:
Flexible information exchange is critical to successful design-analysis integration, but current top-down, standards-based and model-oriented strategies impose restrictions that contradicts this flexibility. In this article we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. We then discuss how a shared mapping process that is flexible and user friendly supports non-programmers in creating these custom connections. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We then discuss potential challenges and opportunities for its development as a flexible, visual, collaborative, scalable and open system.
Resumo:
Cold–formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.
Resumo:
Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. This paper contains a comprehensive set of analytical benchmark solutions for steel frames comprising non-compact sections, which can be used to verify the accuracy of simplified concentrated plasticity methods of advanced analysis. The analytical benchmark solutions were obtained using a distributed plasticity shell finite element model that explicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. A brief description and verification of the shell finite element model is provided in this paper.
Resumo:
Wind power has become one of the popular renewable resources all over the world and is anticipated to occupy 12% of the total global electricity generation capacity by 2020. For the harsh environment that the wind turbine operates, fault diagnostic and condition monitoring are important for wind turbine safety and reliability. This paper employs a systematic literature review to report the most recent promotions in the wind turbine fault diagnostic, from 2005 to 2012. The frequent faults and failures in wind turbines are considered and different techniques which have been used by researchers are introduced, classified and discussed.
Resumo:
This paper describes an investigation into the effectiveness of using spray-on nano-particle reinforced polymer and aluminium foam as new types of retrofit material to prevent the breaching and collapse of unreinforced concrete masonry walls subjected to blast over a whole range of dynamic and impulsive regimes. Material models from the LSDYNA material library were used to model the behaviors of each of the materials and its interface for retrofitted and unretrofitted masonry walls. Available test data were used to validate the numerical models. Using the validated LS-DYNA numerical models, the pressure-impulse diagrams for retrofitted concrete masonry walls were constructed. The efficiency of using these retrofits to strengthen the unreinforced concrete masonry unit (CMU) walls under various pressures and impulses was investigated using pressure-impulse diagrams. Comparisons were made to find the most efficient retrofits for masonry walls against blasts.
Resumo:
A review of the literature that frames coaching practice and specifically the formation and determination of expert coaching practice reveals a body of research that lacks continuity. It has recently been argued that much of the instability surrounding our professional interpretation of coaching practice stems from a penchant for subjective investigation. This analysis draws on a review of over 100 peer reviewed articles, chapters and books – all published within the last 35 years, that address the notion of coaching practice. The findings of this analysis suggests that much of the research used to establish conceptual clarity fails to distinguish between highly organised or efficient coaching practice and expert coaching practice. This paper concludes with some recommendations from alternate paradigms which suggest that expertise in interceptive sports coaching may be better theorised and suitably identified through a lens of the growing ideas surrounding ‘emergence’.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.
Resumo:
This paper presents the details of full scale fire tests of LSF wall panels conducted using realistic fire time-temperature curves. Tests included eight LSF wall specimens of various configurations exposed to both parametric design and natural fire curves. Details of the fire test set-up, test procedure and the results including the measured time-temperature and deformation curves of LSF wall panels are presented along with wall stud failure modes and times. This paper also compares the structural and thermal behavioural characteristics of LSF wall studs with those based on the standard time-temperature curve. Finally, the stud failure times and temperatures are summarized for both standard and realistic design fire curves. This study provides the necessary test data to validate the numerical models of LSF wall panels and to undertake a detailed study into the structural and thermal performance of LSF wall panels exposed to realistic design fire curves.
Resumo:
Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.
Resumo:
The last two decades has seen a proliferation in the provision of, and importance attached to, coach education in many Western countries [1]. Pivotal to many coach education programmes is the notion of apprenticeship [2,3,4]. Increasingly, mentoring is being positioned as a possible tool for enhancing coach education and consequently professional expertise [5]. However, there is a paucity of empirical data on interventions in, and evaluations of, coach education programmes. In their recent evaluation of a coach education programme Cassidy, Potrac & McKenzie [6] conclude that the situated learning literature could provide coach educators with a generative platform for the (re)examinationof apprenticeships and mentoring in a coach education context. This paper consequently discusses the merits of using situated learning theory [7] and the associated concept of Communities of Practice (CoP) [8] to stimulate discussion on developing new understandings of the practices of apprenticeship and mentoring in coach education.
Resumo:
Simon Jenkins, in his stimulus piece on David Clutterbuck amply demonstrates just how prolific Clutterbuck has been over a working lifetime. Generally accepted as the person who introduced supported mentoring into Europe, Clutterbuck has written widely on matters that relate to relationships, processes, evidence (and its capacity or otherwise to influence practice), procedures, complexity, management, supervision, guidance (of one kind or another); the list goes on. It is an impressive vita indeed and yet, Clutterbuck’s influence on the world of sports and more specifically, sports coaching; remains relatively modest. Of course this is the purpose of Jenkins’ piece, to stimulate our thought processes such that our attention can be drawn to the possible impact Clutterbuck might have in sport, sports coaching, and athlete and coach mentoring. If nothing else, this is an admirable challenge that Jenkins has set himself.
Resumo:
This paper reports on a collaborative research project between the Faculty of Health Sciences at the University of Ottawa, Triathlon Canada, and the Coaching Association of Canada (CAC). It was designed around a lifelong learner perspective and the Organization for Economic Cooperation and Development’s (OECD) qualifications system. In this paper, we first review the coach learning literature as it pertains to the CAC. We then highlight the background and perspective of a high performance director’s experience in designing and attempting to implement a novel coach education training program. In doing so we uncover the frustrations and tensions in trying to balance innovation with prescribed process and policy. We conclude by making suggestions for further research specifically focused on the background of the key agents involved with the design, implementation and administration of coach education training programs in the competition-development context of the NCCP.