357 resultados para visual impairment
Resumo:
In this chapter Knight & Dooley discuss arts learning and issues of educational authenticity via children’s engagement with iPads (O’Mara & Laidlaw 2011; Shifflet, Toledo & Mattoon 2012). The chapter begins by considering common perceptions about art and how these popular beliefs and conditions affect and influence how children’s art is defined and valorized. The art produced by children using iPads is then discussed through key observations and reflections, and the chapter concludes with some recommendations when selecting apps for making art.
Resumo:
In design studio, sketching or visual thinking is part of processes that assist students to achieve final design solutions. At QUT’s First and Third Year industrial design studio classes we engage in a variety of teaching pedagogies from which we identify ‘Concept Bombs’ as an instrumental in the development of students’ visual thinking and reflective design process, and also as a vehicle to foster positive student engagement. Our ‘formula’: Concept Bombs are 20 minute design tasks focusing on rapid development of initial concept designs and free-hand sketching. Our experience and surveys tell us that students value intensive studio activities especially when combined with timely assessment and feedback. While conventional longer-duration design projects are essential for allowing students to engage with the full depth and complexity of the design process, short and intensive design activities introduce variety to the learning experience and enhance student engagement. This paper presents a comparative analysis of First and Third Year students’ Concept Bomb sketches to describe the types of design knowledge embedded in them, a discussion of limitations and opportunities of this pedagogical technique, as well as considerations for future development of studio based tasks of this kind as design pedagogies in the midst of current university education trends.
Resumo:
A method for calculating visual odometry for ground vehicles with car-like kinematic motion constraints similar to Ackerman's steering model is presented. By taking advantage of this non-holonomic driving constraint we show a simple and practical solution to the odometry calculation by clever placement of a single camera. The method has been implemented successfully on a large industrial forklift and a Toyota Prado SUV. Results from our industrial test site is presented demonstrating the applicability of this method as a replacement for wheel encoder-based odometry for these vehicles.
Resumo:
We employed a novel cuing paradigm to assess whether dynamically versus statically presented facial expressions differentially engaged predictive visual mechanisms. Participants were presented with a cueing stimulus that was either the static depiction of a low intensity expressed emotion; or a dynamic sequence evolving from a neutral expression to the low intensity expressed emotion. Following this cue and a backwards mask, participants were presented with a probe face that displayed either the same emotion (congruent) or a different emotion (incongruent) with respect to that displayed by the cue although expressed at a high intensity. The probe face had either the same or different identity from the cued face. The participants' task was to indicate whether or not the probe face showed the same emotion as the cue. Dynamic cues and same identity cues both led to a greater tendency towards congruent responding, although these factors did not interact. Facial motion also led to faster responding when the probe face was emotionally congruent to the cue. We interpret these results as indicating that dynamic facial displays preferentially invoke predictive visual mechanisms, and suggest that motoric simulation may provide an important basis for the generation of predictions in the visual system.
Resumo:
The reinforcing effects of aversive outcomes on avoidance behaviour are well established. However, their influence on perceptual processes is less well explored, especially during the transition from adolescence to adulthood. Using electroencephalography, we examined whether learning to actively or passively avoid harm can modulate early visual responses in adolescents and adults. The task included two avoidance conditions, active and passive, where two different warning stimuli predicted the imminent, but avoidable, presentation of an aversive tone. To avoid the aversive outcome, participants had to learn to emit an action (active avoidance) for one of the warning stimuli and omit an action for the other (passive avoidance). Both adults and adolescents performed the task with a high degree of accuracy. For both adolescents and adults, increased N170 event-related potential amplitudes were found for both the active and the passive warning stimuli compared with control conditions. Moreover, the potentiation of the N170 to the warning stimuli was stable and long lasting. Developmental differences were also observed; adolescents showed greater potentiation of the N170 component to danger signals. These findings demonstrate, for the first time, that learned danger signals in an instrumental avoidance task can influence early visual sensory processes in both adults and adolescents.
Resumo:
Purpose To determine the prevalence of falls in the 12 months prior to cataract surgery and examine the associations between visual and other risk factors and falls among older bilateral cataract patients in Vietnam. Methods Data collected from 413 patients in the week before scheduled cataract surgery included a questionnaire and three objective visual tests. Results The outcome of interest was self-reported falls in the previous 12 months. A total of 13% (n = 53) of bilateral cataract patients reported 60 falls within the previous 12 months. After adjusting for age, sex, race, employment status, comorbidities, medication usage, refractive management, living status and the three objective visual tests in the worse eye, women (odds ratio, OR, 4.64, 95% confidence interval, CI, 1.85–11.66), and those who lived alone (OR 4.51, 95% CI 1.44–14.14) were at increased risk of a fall. Those who reported a comorbidity were at decreased risk of a fall (OR 0.43, 95% CI 0.19–0.95). Contrast sensitivity (OR 0.31, 95% CI 0.10–0.95) was the only significant visual test associated with a fall. These results were similar for the better eye, except the presence of a comorbidity was not significant (OR 0.45, 95% CI 0.20–1.02). Again, contrast sensitivity was the only significant visual factor associated with a fall (OR 0.15, 95% CI 0.04–0.53). Conclusion Bilateral cataract patients in Vietnam are potentially at high risk of falls and in need of falls prevention interventions. It may also be important for ophthalmologists and health professionals to consider contrast sensitivity measures when prioritizing cataract patients for surgery and assessing their risk of falls.
Resumo:
As a social species in a constantly changing environment, humans rely heavily on the informational richness and communicative capacity of the face. Thus, understanding how the brain processes information about faces in real-time is of paramount importance. The N170 is a high temporal resolution electrophysiological index of the brain's early response to visual stimuli that is reliably elicited in carefully controlled laboratory-based studies. Although the N170 has often been reported to be of greatest amplitude to faces, there has been debate regarding whether this effect might be an artifact of certain aspects of the controlled experimental stimulation schedules and materials. To investigate whether the N170 can be identified in more realistic conditions with highly variable and cluttered visual images and accompanying auditory stimuli we recorded EEG 'in the wild', while participants watched pop videos. Scene-cuts to faces generated a clear N170 response, and this was larger than the N170 to transitions where the videos cut to non-face stimuli. Within participants, wild-type face N170 amplitudes were moderately correlated to those observed in a typical laboratory experiment. Thus, we demonstrate that the face N170 is a robust and ecologically valid phenomenon and not an artifact arising as an unintended consequence of some property of the more typical laboratory paradigm.
Resumo:
Converging evidence from epidemiological, clinical and neuropsychological research suggests a link between cannabis use and increased risk of psychosis. Long-term cannabis use has also been related to deficit-like “negative” symptoms and cognitive impairment that resemble some of the clinical and cognitive features of schizophrenia. The current functional brain imaging study investigated the impact of a history of heavy cannabis use on impaired executive function in first-episode schizophrenia patients. Whilst performing the Tower of London task in a magnetic resonance imaging scanner, event-related blood oxygenation level-dependent (BOLD) brain activation was compared between four age and gender-matched groups: 12 first-episode schizophrenia patients; 17 long-term cannabis users; seven cannabis using first-episode schizophrenia patients; and 17 healthy control subjects. BOLD activation was assessed as a function of increasing task difficulty within and between groups as well as the main effects of cannabis use and the diagnosis of schizophrenia. Cannabis users and non-drug using first-episode schizophrenia patients exhibited equivalently reduced dorsolateral prefrontal activation in response to task difficulty. A trend towards additional prefrontal and left superior parietal cortical activation deficits was observed in cannabis-using first-episode schizophrenia patients while a history of cannabis use accounted for increased activation in the visual cortex. Cannabis users and schizophrenia patients fail to adequately activate the dorsolateral prefrontal cortex, thus pointing to a common working memory impairment which is particularly evident in cannabis-using first-episode schizophrenia patients. A history of heavy cannabis use, on the other hand, accounted for increased primary visual processing, suggesting compensatory imagery processing of the task.
Resumo:
Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA.
Resumo:
This paper deals with constrained image-based visual servoing of circular and conical spiral motion about an unknown object approximating a single image point feature. Effective visual control of such trajectories has many applications for small unmanned aerial vehicles, including surveillance and inspection, forced landing (homing), and collision avoidance. A spherical camera model is used to derive a novel visual-predictive controller (VPC) using stability-based design methods for general nonlinear model-predictive control. In particular, a quasi-infinite horizon visual-predictive control scheme is derived. A terminal region, which is used as a constraint in the controller structure, can be used to guide appropriate reference image features for spiral tracking with respect to nominal stability and feasibility. Robustness properties are also discussed with respect to parameter uncertainty and additive noise. A comparison with competing visual-predictive control schemes is made, and some experimental results using a small quad rotor platform are given.
Resumo:
We studied the effect of rod–cone interactions on mesopic visual reaction time (RT). Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. It was observed that (1) lateral rod–cone interactions increase the cone-mediated RTs; (2) the rod–cone interactions are strongest when rod sensitivity is maximal in a dark surround, but weaker with increased rod activity in a light surround; and (3) the presence of a dark surround nonselectively increased the mean and variability of chromatic (+L-M, S-cone) and luminance (L+M+S) RTs independent of the level of rod activity. The results demonstrate that lateral rod–cone interactions must be considered when deriving mesopic luminous efficiency using RT.
Resumo:
Purpose: This study investigated the impact of simulated hyperopic anisometropia and sustained near work on performance of academic-related measures in children. Methods: Participants included 16 children (mean age: 11.1 ± 0.8 years) with minimal refractive error. Academic-related outcome measures included a reading test (Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (Developmental Eye Movement test). Performance was assessed with and without 0.75 D of imposed monocular hyperopic defocus (administered in a randomised order), before and after 20 minutes of sustained near work. Unilateral hyperopic defocus was systematically assigned to either the dominant or non-dominant sighting eye to evaluate the impact of ocular dominance on any performance decrements. Results: Simulated hyperopic anisometropia and sustained near work both independently reduced performance on all of the outcome measures (p<0.001). A significant interaction was also observed between simulated anisometropia and near work (p<0.05), with the greatest decrement in performance observed during simulated anisometropia in combination with sustained near work. Laterality of the refractive error simulation (ocular dominance) did not significantly influence the outcome measures (p>0.05). A reduction of up to 12% in performance was observed across the range of academic-related measures following sustained near work undertaken during the anisometropic simulation. Conclusion: Simulated hyperopic anisometropia significantly impaired academic–related performance, particularly in combination with sustained near work. The impact of uncorrected habitual anisometropia on academic-related performance in children requires further investigation.
Resumo:
Purpose To quantify the effects of driver age on night-time pedestrian conspicuity, and to determine whether individual differences in visual performance can predict drivers' ability to recognise pedestrians at night. Methods Participants were 32 visually normal drivers (20 younger: M = 24.4 years ± 6.4 years; 12 older: M = 72.0 years ± 5.0 years). Visual performance was measured in a laboratory-based testing session including visual acuity, contrast sensitivity, motion sensitivity and the useful field of view. Night-time pedestrian recognition distances were recorded while participants drove an instrumented vehicle along a closed road course at night; to increase the workload of drivers, auditory and visual distracter tasks were presented for some of the laps. Pedestrians walked in place, sideways to the oncoming vehicles, and wore either a standard high visibility reflective vest or reflective tape positioned on the movable joints (biological motion). Results Driver age and pedestrian clothing significantly (p < 0.05) affected the distance at which the drivers first responded to the pedestrians. Older drivers recognised pedestrians at approximately half the distance of the younger drivers and pedestrians were recognised more often and at longer distances when they wore a biological motion reflective clothing configuration than when they wore a reflective vest. Motion sensitivity was an independent predictor of pedestrian recognition distance, even when controlling for driver age. Conclusions The night-time pedestrian recognition capacity of older drivers was significantly worse than that of younger drivers. The distance at which drivers first recognised pedestrians at night was best predicted by a test of motion sensitivity.