292 resultados para thoracic spine
Resumo:
Differences in genetic control of BMD by skeletal sites and genders were examined by complex segregation analysis in 816 members of 147 families with probands with extreme low BMD. Spine BMD correlated more strongly in male-male comparisons and hip BMD in female-female comparisons, consistent with gender- and site-specificity of BMD heritability. Introduction: Evidence from studies in animals and humans suggests that the genetic control of bone mineral density (BMD) may differ at different skeletal sites and between genders. This question has important implications for the design and interpretation of genetic studies of osteoporosis. Methods: We examined the genetic profile of 147 families with 816 individuals recruited through probands with extreme low BMD (T-score < −2.5, Z-score < −2.0). Complex segregation analysis was performed using the Pedigree Analysis Package. BMD was measured by DXA at both lumbar spine (L1-L4) and femoral neck. Results: Complex segregation analysis excluded purely monogenic and environmental models of segregation of lumbar spine and femoral neck BMD in these families. Pure polygenic models were excluded at the lumbar spine when menopausal status was considered as a covariate, but not at the femoral neck. Mendelian models with a residual polygenic component were not excluded. These models were consistent with the presence of a rare Mendelian genotype of prevalence 3–19 %, causing high BMD at the hip and spine in these families, with additional polygenic effects. Total heritability range at the lumbar spine was 61–67 % and at the femoral neck was 44–67 %. Significant differences in correlation of femoral neck and lumbar spine BMD were observed between male and female relative pairs, with male-male comparisons exhibiting stronger lumbar spine BMD correlation than femoral neck, and female-female comparisons having greater femoral neck BMD correlation than lumbar spine. These findings remained true for parent-offspring correlations when menopausal status was taken into account. The recurrence risk ratio for siblings of probands of a Z-score < −2.0 was 5.4 at the lumbar spine and 5.9 at the femoral neck. Conclusions: These findings support gender- and site-specificity of the inheritance of BMD. These results should be considered in the design and interpretation of genetic studies of osteoporosis.
Resumo:
In summary, although many factors are likely to be involved in regulating calcification and ossification processes, studies of the causation of articular chondrocalcinosis and disorders of spinal ossification, such as DISH and OPLL, implicate control over inorganic pyrophosphate levels as being one of the most important factors in their aetiopathogenesis. The findings of these studies may prove relevant to other rheumatic diseases in which ectopic ossification occurs, such as AS.
Resumo:
Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.
Resumo:
We have investigated the role of 23 candidate genes in the control of bone mineral density (BMD) by linkage studies in families of probands with osteoporosis (lumbar spine [LS] or femoral neck [FN] BMD T score < -2.5) and low BMD relative to an age- and gender-matched cohort (Z score < -2.0). One hundred and fifteen probands (35 male, 80 female) and 499 of their first- or second-degree relatives (223 males and 276 females) were recruited for the study. BMD was measured at the LS and FN using dual-energy X-ray absorptiometry and expressed as age- and gender-matched Z scores corrected for body mass index. The candidate genes studied were the androgen receptor, type I collagen A1 (COLIA1), COLIA2, COLIIA1, vitamin D receptor (VDR), colony-stimulating factor 1, calcium-sensing receptor, epidermal growth factor (EGF), estrogen receptor 1 (ESR1), fibrillin type 1, insulin-like growth factor 1, interleukin-1 alpha (IL-1α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-11 (IL-11), osteopontin, parathyroid hormone (PTH), PTH-related peptide, PTH receptor type 1 (PTHR1), transforming growth factor-beta 1, and tumor necrosis factors alpha and beta. Sixty-four microsatellites lying close to or within these genes were investigated for linkage with BMD. Using the program MapMaker/Sibs there was suggestive evidence of linkage between BMD and PTHR1 (maximum LOD score obtained [MLS] 2.7-3.5). Moderate evidence of linkage was also observed with EGF (MLS 1.8), COLIA1 (MLS 1.7), COLIIA1/VDR (MLS 1.7), ESR1 (MLS 1.4), IL-1α (MLS 1.4), IL-4 (MLS 1.2), and IL-6 (MLS 1.2). Variance components analysis using the program ACT, correcting for proband-wise ascertainment, also showed evidence of linkage (p ≤0.05) at markers close to or within the candidate genes IL- 1α, PTHR1, IL-6, and COLIIA1/VDR. Further studies will be required to confirm these findings, to refine the location of gene responsible for the observed linkage, and to screen the candidate genes targeted at these loci for mutations.
Resumo:
Background: Catheter ablation procedures for atrial fibrillation (AF) may frequently require long fluoroscopic times. We sought to undertake a review of radiation safety practice in our Cardiac Electrophysiology Laboratory and implement changes to minimize fluoroscopic doses. We also sought to compare the results with radiation doses for percutaneous coronary intervention (PCI) cases performed in our hospital. Methods: Fluoroscopic times and doses for AF ablation procedures performed by a single operator on a Philips Integris H3000 image-intensifier were analysed for 11-month period. Results were compared with all PCI procedures performed over a similar period by multiple operators on a Philips Integris Allura FD system. Comprehensive review of radiation practice in the Electrophysiology laboratory identified the potential to reduce pulse frame rates and doses, and to narrow the field of interest without impacting the performance of the procedure. These changes were implemented and results analysed after a further 11 months. Results: In the pre-intervention period 50 AF catheter ablations had a mean fluoroscopic time of 86.4 min and mean fluoroscopic dose 68.4 Gy/cm2. Post-intervention 75 procedures had a mean fluorosocopic time of 68.9 min (p < 0.0001) and mean dose of 14.3 Gy/cm2 (p < 0.0001) 128 PCI procedures had a mean combined fluoroscopic and image acquisition time of 10.0 min and mean total dose 38.8 Gy/cm2. Conclusions: Catheter ablation procedures for AF may require lengthy use of fluoroscopy but simple modifications to radiation practice can result in marked reductions in radiation dose that compare favourably with PCI case doses
Resumo:
This study evaluates the effectiveness and social implications of home monitoring of 31 infants at risk of sudden infant death syndrome (SIDS). Thirteen siblings of children dying of SIDS, nine near miss SIDS infants and nine preterm infants with apnoea persisting beyond 40 weeks post conceptual age were monitored from a mean age of 15 days to a mean of 10 months. Chest movement detection monitors were used in 27 and thoracic impedance monitors in four. Genuine apnoeic episodes were reported by 21 families, and 13 infants required resuscitation. Apnoeic episodes occurred in all nine preterm infants but in only five (38%) of the siblings of SIDS (P<0.05). Troublesome false alarms were a major problem occurring with 61% of the infants and were more common with the preterm infants than the siblings of SIDS. All but two couples stated that the monitor decreased anxiety and improved their quality of life. Most parents accepted that the social restrictions imposed by the monitor were part of the caring process but four couples were highly resentful of the changes imposed on their lifestyle. The monitors used were far from ideal with malfunction occurring in 17, necessitating replacement in six, repair in six and cessation of monitoring in three. The parents became ingenious in modifying the monitors to their own individual requirements Although none of these 31 ‘at risk’ infants died the study sample was far too small to conclude whether home monitoring prevented any cases of SIDS.
Resumo:
This study assessed the status of bone and cardiovascular health in young, prepubertal females (aged 9 to 11 years) during a school based intervention program involving weight bearing physical activity. A study of 10 months duration was conducted in four primary schools in the Melbourne suburbs. It involved a physical activity group (n=38) and an aged-matched control group (n=33). Baseline data including pubertal status, health-related fitness, bone mass and body composition were obtained pre and post the intervention programme. All children had their bone mineral density monitored. Bone mineral density and body composition measurements were performed by DXA using the Hologic QDR 2000 bone densitometer. At the completion of the program the activity group had accrued significantly greater bone mass at total body, lumbar spine, leg and femoral neck when expressed as BMC or BMD.
Resumo:
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.
Resumo:
This thesis studied a new minimally invasive implant for scoliosis correction that aims to correct the deformity without fusing the spine, thereby allowing movement and growth in the spine following surgery. The effect of two different vertebral body implant (staple) designs on the stiffness of the spine, using calf spines as an in vitro model, was studied. The results showed that the implants decreased spinal stiffness, with associated potential damage to the growth plates due to the staple tips. There were no significant differences in stiffness between the two staple designs tested.
The relationship between forward head posture and cervical muscle performance in healthy individuals
Resumo:
Background Forward head postures (FHP) are proposed to adversely load cervical spine structures. Neck muscles provide support for the neck, and thus an imbalance in neck muscle performance could potentially contribute to the development of FHP. Previous studies have not considered the interaction of multiple muscle groups with regard to postural orientation. Given the interdependence of muscles along the cervical spine for optimal orientation and physical support of the vertebral column, the performance of a single muscle group may not accurately reflect the coordinated ability of the muscles to maintain a neutral neck posture. Purpose The purpose of this study was to investigate the relationship between FHP and the balance between the cervical extensor and flexor muscle groups in healthy individuals. We hypothesised that the magnitude of FHP would be associated with the strength and endurance performance ratios between the cervical extensor and flexor muscle groups. Methods Twenty male and 24 female volunteers were photographed in the sagittal plane wearing surface markers. The FHP of each participant was measured via the tragus-sternum marker distance over two conditions: (1)in relaxed standing and (2)during a sustained sitting task. Maximal strength (Nm) and endurance (s) performance of the extensor and flexor muscle groups were recorded at the upper (craniocervical flexion/extension (CCF/CCE)) and lower (cervicothoracic flexion/extension (CTF/CTE)) cervical regions. Muscle performance measures were expressed as extension:flexion ratios and their relation to FHP evaluated. A stepwise multiple regression analysis using backward elimination was utilised to examine the relationship between the postural measures and the muscle performance ratio measures. Separate models were used for the two different postural conditions (standing, sustained sitting). Gender was included as a constant correction factor in all regression models. Where gender was a significant variable in the model, analyses were repeated separately for males and females. Results Greater FHP in standing was significantly associated with reduced proportional CTE to CCF strength in females (R2 = 0.21, P = 0.03) and greater proportional CTE to CTF strength in males (R2 = 0.23, P = 0.03). A greater drift into FHP during sustained sitting was associated with a relative reduction in CCE endurance proportional to CTF endurance in females only (R2 = 0.27, P = 0.017). Conclusion(s) This initial study indicates that the balance in performance between the cervical flexor and extensor muscle groups may impact FHP in healthy individuals. However, the findings were inconsistent across different muscle performance ratios and gender. Larger scale studies are therefore now needed to further clarify the relationship between FHP and muscle performance. Implications The findings suggest that relative performance of the various cervical muscle groups needs to be accounted for when considering postural correction strategies in the clinical setting, as is often recommended.
Resumo:
Purpose To evaluate if adding clonidine to a standard nerve root block containing local anaesthetic and steroid improved the outcome of patients with severe lumbar nerve root pain secondary to MRI proven lumbar disc prolapse. Methods We undertook a single blind, prospective, randomised controlled trial evaluating 100 consecutive patients with nerve root pain secondary to lumbar disc prolapse undergoing trans-foraminal epidural steroid injection either with or without the addition of clonidine. 50 patients were allocated to each arm of the study. The primary outcome measure was the avoidance of a second procedure- repeat injection or micro-discectomy surgery. Secondary outcome measures were also studied: pain scores for leg and back pain using a visual analogue scale (VAS), the Roland Morris Disability Questionnaire (RMDQ) and the Measure Your Own Medical Outcome Profile (MYMOP). Follow up was carried out at 6 weeks, 6 months and 1 year. Results No serious complications occurred. Of the 50 patients who received the addition of clonidine, 56% were classified as successful injections, with no further intervention required, as opposed to 40% who received the standard injection. This difference did not reach statistical significance (p=0.109, chi-squared test). All secondary measures showed no statistically significant differences between the groups except curiously, the standard group who had been classified as successful had better leg pain relief than the clonidine group (p=0.026) at 1 year. Conclusions This pilot study has shown a 16% treatment effect with adding clonidine to lumbar nerve root blocks and that it is a safe injectate for this purpose.
Resumo:
Background Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required. Methods The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry. Results Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly chondroidal with chondrocyte-like cells embedded within collagen type II- and X-rich matrix. This corresponded with upregulation of mRNA for cartilage markers Col2a1, sox9 and Comp. Osteophytes, though infrequent, were more prevalent in later disease. Conclusions The inflammation-driven IVD destruction was shown to be a prerequisite for axial disease progression to osteoproliferation in the PGISp mouse. Osteoproliferation led to vertebral body deformity and fusion but was never seen concurrent with persistent inflammation, suggesting a sequential process. The findings support that early intervention with anti-inflammatory therapies will be needed to limit destructive processes and consequently prevent progression of AS.
Resumo:
Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10–6 (0.05/9593) and 1.00 × 10–4, respectively. In stage 2, nine stage 1–discovered phosSNPs (based on α = 1.00 × 10–4) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10–3, 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10–10, p = 5.26 × 10–10, and p = 3.01 × 10–10, respectively) and HIP-BMD (p = 3.26 × 10–6, p = 1.97 × 10–6, and p = 1.63 × 10–12, respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants. © 2015 American Society for Bone and Mineral Research.
Resumo:
Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.
Resumo:
CONTEXT: The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. OBJECTIVE: Our objective was to determine circulating sclerostin concentrations in HBM. DESIGN AND PARTICIPANTS: In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. MAIN MEASURES: Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. RESULTS: Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). CONCLUSIONS: Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to increased sclerostin levels.