336 resultados para system integration
Resumo:
This paper argues a model of complex system design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of the efficient use of energy and material resource in life-cycle of buildings, the active involvement of the occupants in micro-climate control within buildings, and the natural environmental context. The interactions of the parameters compose a complex system of sustainable architectural design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The complexity theory of dissipative structure states a microscopic formulation of open system evolution, which provides a system design framework for the evolution of building environmental performance towards an optimization of sustainability in architecture.
Resumo:
Decisions made in the earliest stage of architectural design have the greatest impact on the construction, lifecycle cost and environmental footprint of buildings. Yet the building services, one of the largest contributors to cost, complexity, and environmental impact, are rarely considered as an influence on the design at this crucial stage. In order for efficient and environmentally sensitive built environment outcomes to be achieved, a closer collaboration between architects and services engineers is required at the outset of projects. However, in practice, there are a variety of obstacles impeding this transition towards an integrated design approach. This paper firstly presents a critical review of the existing barriers to multidisciplinary design. It then examines current examples of best practice in the building industry to highlight the collaborative strategies being employed and their benefits to the design process. Finally, it discusses a case study project to identify directions for further research.
Resumo:
An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit. The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation. ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS. This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy. To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems. Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches.
Resumo:
The current epidemic of paediatric obesity is consistent with a myriad of health-related comorbid conditions. Despite the higher prevalence of orthopaedic conditions in overweight children, a paucity of published research has considered the influence of these conditions on the ability to undertake physical activity. As physical activity participation is directly related to improvements in physical fitness, skeletal health and metabolic conditions, higher levels of physical activity are encouraged, and exercise is commonly prescribed in the treatment and management of childhood obesity. However, research has not correlated orthopaedic conditions, including the increased joint pain and discomfort that is commonly reported by overweight children, with decreases in physical activity. Research has confirmed that overweight children typically display a slower, more tentative walking pattern with increased forces to the hip, knee and ankle during 'normal' gait. This research, combined with anthropometric data indicating a higher prevalence of musculoskeletal malalignment in overweight children, suggests that such individuals are poorly equipped to undertake certain forms of physical activity. Concomitant increases in obesity and decreases in physical activity level strongly support the need to better understand the musculoskeletal factors associated with the performance of motor tasks by overweight and obese children.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.
Resumo:
This thesis maps the author's journey from a music composition practice to a composition and performance practice. The work involves the development of a software library for the purpose of encapsulating compositional ideas in software, and realising these ideas in performance through a live coding computer music practice. The thesis examines what artistic practice emerges through live coding and software development, and does this permit a blurring between the activities of music composition and performance. The role that software design plays in affecting musical outcomes is considered to gain an insight into how software development contributes to artistic development. The relationship between music composition and performance is also examined to identify the means by which engaging in live coding and software development can bring these activities together. The thesis, situated within the discourse of practice led research, documents a journey which uses the experience of software development and performance as a means to guide the direction of the research. The journey serves as an experiment for the author in engaging an hitherto unfamiliar musical practice, and as a roadmap for others seeking to modify or broaden their artistic practice.
Resumo:
This document outlines the system submitted by the Speech and Audio Research Laboratory at the Queensland University of Technology (QUT) for the Speaker Identity Verication: Application task of EVALITA 2009. This submission consisted of a score-level fusion of three component systems, a joint-factor GMM system and two SVM systems using GLDS and GMM supervector kernels. Development and evaluation results are presented, demonstrating the effectiveness of this fused system approach.
Resumo:
Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such Light gauge Steel Framing (LSF) systems are widely accepted in industrial and commercial building construction. An example application is in floor-ceiling systems. Light gauge steel floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was carried out to investigate its structural and fire resistance behaviour under standard fire conditions. In this research project full scale experimental tests of the new LSF floor system based on a composite ceiling unit were undertaken using a gas furnace at the Queensland University of Technology. Both the conventional and the new steel floor-ceiling systems were tested under structural and fire loads. Full scale fire tests provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system. This paper presents the details of this research into the structural and fire behaviour of light gauge steel floor systems protected by the new composite panel, and the results.
Resumo:
This project is the result of a collaborative design process involving QUT School of Design, and AREN Consulting and ZIAD (Zheijiang Provincial Institute of Architectural Design and Research). This project is the submission prepared by the above partnership for an invited international design competition, promoted by Hangzhou City, China. ---------- This major urban design and architecture project is for a large transport oriented development on the new Hangzhou Subway system. The development, covering several city blocks, includes the provision of residential, retail, education, commercial, and transport infrastructure; integrated with rail, bus and ferry systems. ---------- The design strategies are based on the development or artificial land forms; the cutting of new canals, raising of the ground plane, and metaphoric reference to the Yellow Mountains (explored in the detail of the central ‘ridge’ of built form). Further to this, the project explores the integration of sustainable technologies and philosophies with large scale building projects in a subtropical context.
Resumo:
Over recent decades there has been growing interest in the role of non-motorized modes in the overall transport system (especially walking and cycling for private purposes) and many government initiatives have been taken to encourage these active modes. However there has been relatively little research attention given to the paid form of non-motorized travel which can be called non-motorized public transport (NMPT). This involves cycle-powered vehicles which can carry several passengers (plus the driver) and a small amount of goods; and which provide flexible hail-and-ride services. Effectively they are non-motorized taxis. Common forms include cycle-rickshaw (Bangladesh, India), becak (Indonesia), cyclos (Vietnam, Cambodia), bicitaxi (Columbia, Cuba), velo-taxi (Germany, Netherland), and pedicabs (UK, Japan, USA). --------- The popularity of NMPT is widespread in developing countries, where it caters for a wide range of mobility needs. For instance in Dhaka, Bangladesh, rickshaws are the preferred mode for non-walk trips and have a higher mode share than cars or buses. Factors that underlie the continued existence and popularity of NMPT in many developing countries include positive contribution to social equity, micro-macro economic significance, employment creation, and suitability for narrow and crowded streets. Although top speeds are lower than motorized modes, NMPT is competitive and cost-effective for short distance door-to-door trips that make up the bulk of travel in many developing cities. In addition, NMPT is often the preferred mode for vulnerable groups such as females, children and elderly people. NMPT is more prominent in developing countries but its popularity and significance is also gradually increasing in several developed countries of Asia, Europe and parts of North America, where there is a trend for the NMPT usage pattern to broaden from tourism to public transport. This shift is due to a number of factors including the eco-sustainable nature of NMPT; its operating flexibility (such as in areas where motorized vehicle access is restricted or discouraged through pricing); and the dynamics that it adds to the urban fabric. Whereas NMPT may have been seen as a “dying” mode, in many cities it is maintaining or increasing its significance and with potential for further growth. --------- This paper will examine and analyze global trends in NMPT incorporating both developing and developed country contexts and issues such as usage patterns; NMPT policy and management practices; technological development; and operational integration of NMPT into the overall transport system. It will look at how NMPT policies, practices and usage have changed over time and the differing trends in developing and developed countries. In particular, it will use Dhaka, Bangladesh as a case study in recognition of its standing as the major NMPT city in the world. The aim is to highlight NMPT issues and trends and their significance for shaping future policy towards NMPT in developing and developed countries. The paper will be of interest to transport planners, traffic engineers, urban and regional planners, environmentalists, economists and policy makers.
Resumo:
This article examines the relationship between the arts and national innovation policy in Australia, pivoting around the Venturous Australia report released in September 2008 as part of the Review of the National Innovation System (RNIS). This came at a time of optimism that the arts sector would be included in Australia’s federal innovation policy. However, despite the report’s broad vision for innovation and specific commentary on the arts, the more ambitious hopes of arts sector advocates remained unfulfilled. This article examines the entwining discourses of creativity and innovation which emerged globally and in Australia prior to the RNIS, before analysing Venturous Australia in terms of the arts and the ongoing science-and-technology bias to innovation policy. It ends by considering why sector-led policy research and lobbying has to date proved unsuccessful and then suggests what public policy development is now needed.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map in an online manner, driving loop closure and relocalization through sequences of familiar visual scenes. Visual ambiguity is managed by maintaining multiple competing vehicle pose estimates, while cumulative errors in odometry are corrected after loop closure by a map correction algorithm. We demonstrate the mapping performance of the system on a 66 km car journey through a complex suburban road network. Using only a web camera operating at 10 Hz, RatSLAM generates a coherent map of the entire environment at real-time speed, correctly closing more than 51 loops of up to 5 km in length.
Resumo:
The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.
Resumo:
This paper details the design of an autonomous helicopter control system using a low cost sensor suite. Control is maintained using simple nested PID loops. Aircraft attitude, velocity, and height is estimated using an in-house designed IMU and vision system. Information is combined using complimentary filtering. The aircraft is shown to be stabilised and responding to high level demands on all axes, including heading, height, lateral velocity and longitudinal velocity.