288 resultados para single-strand conformation pollymorphism (SSCP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photovoltaic (PV) panels and electric domestic water heater with storage (DWH) are widely used in households in many countries. However, DWH should be explored as an energy storage mechanism before batteries when households have excess PV energy. Through a residential case study in Queensland, Australia, this paper presents a new optimized design and control solution to reduce water heating costs by utilizing existing DWH energy storage capacity and increasing PV self-consumption for water heating. The solution is produced by evaluating the case study energy profile and numerically maximizing the use of PV for DWH. A conditional probability matrix for different solar insolation and hot water usage days is developed to test the solution. Compared to other tariffs, this solution shows cost reduction from 20.8% to 63.3% This new solution could encourage solar households move to a more economical and carbon neutral water heating method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we describe a simple correction for multiple testing of single-nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with each other, on the basis of the spectral decomposition (SpD) of matrices of pairwise LD between SNPs. This method provides a useful alternative to more computationally intensive permutation tests. Additionally, output from SNPSpD includes eigenvalues, principal-component coefficients, and factor "loadings" after varimax rotation, enabling the selection of a subset of SNPs that optimize the information in a genomic region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To evaluate if adding clonidine to a standard nerve root block containing local anaesthetic and steroid improved the outcome of patients with severe lumbar nerve root pain secondary to MRI proven lumbar disc prolapse. Methods We undertook a single blind, prospective, randomised controlled trial evaluating 100 consecutive patients with nerve root pain secondary to lumbar disc prolapse undergoing trans-foraminal epidural steroid injection either with or without the addition of clonidine. 50 patients were allocated to each arm of the study. The primary outcome measure was the avoidance of a second procedure- repeat injection or micro-discectomy surgery. Secondary outcome measures were also studied: pain scores for leg and back pain using a visual analogue scale (VAS), the Roland Morris Disability Questionnaire (RMDQ) and the Measure Your Own Medical Outcome Profile (MYMOP). Follow up was carried out at 6 weeks, 6 months and 1 year. Results No serious complications occurred. Of the 50 patients who received the addition of clonidine, 56% were classified as successful injections, with no further intervention required, as opposed to 40% who received the standard injection. This difference did not reach statistical significance (p=0.109, chi-squared test). All secondary measures showed no statistically significant differences between the groups except curiously, the standard group who had been classified as successful had better leg pain relief than the clonidine group (p=0.026) at 1 year. Conclusions This pilot study has shown a 16% treatment effect with adding clonidine to lumbar nerve root blocks and that it is a safe injectate for this purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, huge breakthroughs in genetics - driven by new technology and different statistical approaches - have resulted in a plethora of new disease genes identified for both common and rare diseases. Massive parallel sequencing, commonly known as next-generation sequencing, is the latest advance in genetics, and has already facilitated the discovery of the molecular cause of many monogenic disorders. This article describes this new technology and reviews how this approach has been used successfully in patients with skeletal dysplasias. Moreover, this article illustrates how the study of rare diseases can inform understanding and therapeutic developments for common diseases such as osteoporosis. © International Osteoporosis Foundation and National Osteoporosis Foundation 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Breast cancer (BC) is primarily considered a genetic disorder with a complex interplay of factors including age, gender, ethnicity, family history, personal history and lifestyle with associated hormonal and non-hormonal risk factors. The SNP rs2910164 in miR146a (a G to C polymorphism) was previously associated with increased risk of BC in cases with at least a single copy of the C allele in breast cancer, though results in other cancers and populations have shown significant variation. Methods In this study, we examined this SNP in an Australian sporadic breast cancer population of 160 cases and matched controls, with a replicate population of 403 breast cancer cases using High Resolution Melting. Results Our analysis indicated that the rs2910164 polymorphism is associated with breast cancer risk in both primary and replicate populations (p = 0.03 and 0.0013, respectively). In contrast to the results of familial breast cancer studies, however, we found that the presence of the G allele of rs2910164 is associated with increased cancer risk, with an OR of 1.77 (95% CI 1.40–2.23). Conclusions The microRNA miR146a has a potential role in the development of breast cancer and the effects of its SNPs require further inquiry to determine the nature of their influence on breast tissue and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper-like free-standing germanium (Ge) and single-walled carbon nanotube (SWCNT) composite anodes were synthesized by the vacuum filtration of Ge/SWCNT composites, which were prepared by a facile aqueous-based method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Electrochemical measurements demonstrate that the Ge/SWCNT composite paper anode with the weight percentage of 32% Ge delivered a specific discharge capacity of 417 mA h g-1 after 40 cycles at a current density of 25 mA g-1, 117% higher than the pure SWCNT paper anode. The SWCNTs not only function as a flexible mechanical support for strain release, but also provide excellent electrically conducting channels, while the nanosized Ge particles contribute to improving the discharge capacity of the paper anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2SiO5 is a promising candidate for oxidation-resistant or environmental/thermal barrier coatings (ETBC) due to its excellent high-temperature stability, low elastic modulus and low oxygen permeability. In this paper, we investigated the thermal properties of Y2SiO5 comprehensively, including thermal expansion, thermal diffusivity, heat capacity and thermal conductivity. It is interesting that Y2SiO5 has a very low thermal conductivity (∼1.40 W/m K) but a relatively high linear thermal expansion coefficient ((8.36 ± 0.5) × 10-6 K-1), suggesting compatible thermal and mechanical properties to some non-oxide ceramics and nickel superalloys as ETBC layer. Y2SiO5 is also an ideal EBC on YSZ TBC layer due to their close thermal expansion coefficients. As a continuous source of Y3+, it is predicted that Y2SiO5 EBC may prolong the lifetime of zirconia-based TBC by stopping the degradation aroused by the loss of Y stabilizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the least known compounds among transition metal dichalcogenides (TMDCs) is the layered triclinic technetium dichalcogenides (TcX2, X = S, Se). In this work, we systematically study the structural, mechanical, electronic, and optical properties of TcS2 and TcSe2 monolayers based on density functional theory (DFT). We find that TcS2 and TcSe2 can be easily exfoliated in a monolayer form because their formation and cleavage energy are analogous to those of other experimentally realized TMDCs monolayer. By using a hybrid DFT functional, the TcS2 and TcSe2 monolayers are calculated to be indirect semiconductors with band gaps of 1.91 and 1.69 eV, respectively. However, bilayer TcS2 exhibits direct-bandgap character, and both TcS2 and TcSe2 monolayers can be tuned from semiconductor to metal under effective tensile/compressive strains. Calculations of visible light absorption indicate that 2D TcS2 and TcSe2 generally possess better capability of harvesting sunlight compared to single-layer MoS2 and ReSe2, implying their potential as excellent light-absorbers. Most interestingly, we have discovered that the TcSe2 monolayer is an excellent photocatalyst for splitting water into hydrogen due to the perfect fit of band edge positions with respect to the water reduction and oxidation potentials. Our predictions expand the two-dimensional (2D) family of TMDCs, and the remarkable electronic/optical properties of monolayer TcS2 and TcSe2 will place them among the most promising 2D TMDCs for renewable energy application in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of multiple satellite navigation systems, including BDS, Galileo, modernized GPS, and GLONASS, brings great opportunities and challenges for precise point positioning (PPP). We study the contributions of various GNSS combinations to PPP performance based on undifferenced or raw observations, in which the signal delays and ionospheric delays must be considered. A priori ionospheric knowledge, such as regional or global corrections, strengthens the estimation of ionospheric delay parameters. The undifferenced models are generally more suitable for single-, dual-, or multi-frequency data processing for single or combined GNSS constellations. Another advantage over ionospheric-free PPP models is that undifferenced models avoid noise amplification by linear combinations. Extensive performance evaluations are conducted with multi-GNSS data sets collected from 105 MGEX stations in July 2014. Dual-frequency PPP results from each single constellation show that the convergence time of undifferenced PPP solution is usually shorter than that of ionospheric-free PPP solutions, while the positioning accuracy of undifferenced PPP shows more improvement for the GLONASS system. In addition, the GLONASS undifferenced PPP results demonstrate performance advantages in high latitude areas, while this impact is less obvious in the GPS/GLONASS combined configuration. The results have also indicated that the BDS GEO satellites have negative impacts on the undifferenced PPP performance given the current “poor” orbit and clock knowledge of GEO satellites. More generally, the multi-GNSS undifferenced PPP results have shown improvements in the convergence time by more than 60 % in both the single- and dual-frequency PPP results, while the positioning accuracy after convergence indicates no significant improvements for the dual-frequency PPP solutions, but an improvement of about 25 % on average for the single-frequency PPP solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In increasingly complex health service environments, the quality of teamwork and co-operation between doctors, nurses and allied health professionals, is 'under the microscope'. Interprofessional education (IPE), a process whereby health professionals learn 'from, with and about each other', is advocated as a response to widespread calls for improved communication and collaboration between healthcare professionals. Although there is much that is commendable in IPE, the authors caution that the benefits may be overstated if too much is attributed to, or expected of, IPE activities. The authors propose that clarity is required around what can realistically be achieved. Furthermore, engagement with clinicians in the clinical practice setting who are instrumental in assisting students make sense of their knowledge through practice, is imperative for sustainable outcomes. © AHHA 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internationally there is a growing interest in the mental wellbeing of young people. However, it is unclear whether mental wellbeing is best conceptualized as a general wellbeing factor or a multidimensional construct. This paper investigated whether mental wellbeing, measured by the Mental Health Continuum-Short Form (MHC-SF), is best represented by: (1) a single-factor general model; (2) a three-factor multidimensional model or (3) a combination of both (bifactor model). 2,220 young Australians aged between 16 and 25 years completed an online survey including the MHC-SF and a range of other wellbeing and mental ill-health measures. Exploratory factor analysis supported a bifactor solution, comprised of a general wellbeing factor, and specific group factors of psychological, social and emotional wellbeing. Confirmatory factor analysis indicated that the bifactor model had a better fit than competing single and three-factor models. The MHC-SF total score was more strongly associated with other wellbeing and mental ill-health measures than the social, emotional or psychological subscale scores. Findings indicate that the mental wellbeing of young people is best conceptualized as an overarching latent construct (general wellbeing) to which emotional, social and psychological domains contribute. The MHC-SF total score is a valid and reliable measure of this general wellbeing factor.