328 resultados para robust stability
Resumo:
This book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.
Resumo:
This paper presents a trajectory-tracking control strategy for a class of mechanical systems in Hamiltonian form. The class is characterised by a simplectic interconnection arising from the use of generalised coordinates and full actuation. The tracking error dynamic is modelled as a port-Hamiltonian Systems (PHS). The control action is designed to take the error dynamics into a desired closed-loop PHS characterised by a constant mass matrix and a potential energy with a minimum at the origin. A transformation of the momentum and a feedback control is exploited to obtain a constant generalised mass matrix in closed loop. The stability of the close-loop system is shown using the close-loop Hamiltonian as a Lyapunov function. The paper also considers the addition of integral action to design a robust controller that ensures tracking in spite of disturbances. As a case study, the proposed control design methodology is applied to a fully actuated robotic manipulator.
Resumo:
This paper presents an improved field weakening algorithm for synchronous reluctance motor (RSMs) drives. The proposed algorithm is robust to the variations in the machine d- and q-axes inductances. The transition between the maximum torque per ampere (MTPA), current and voltage limits as well as the maximum torque per flux (MTPF) trajectories is smooth. The proposed technique is combined with the direct torque control method to attain a high performance drive in the field weakening region. Simulation and experimental results are supplemented to verify the effectiveness of the proposed approach.
Resumo:
1. In conservation decision-making, we operate within the confines of limited funding. Furthermore, we often assume particular relationships between management impact and our investment in management. The structure of these relationships, however, is rarely known with certainty - there is model uncertainty. We investigate how these two fundamentally limiting factors in conservation management, money and knowledge, impact optimal decision-making. 2. We use information-gap decision theory to find strategies for maximizing the number of extant subpopulations of a threatened species that are most immune to failure due to model uncertainty. We thus find a robust framework for exploring optimal decision-making. 3. The performance of every strategy decreases as model uncertainty increases. 4. The strategy most robust to model uncertainty depends not only on what performance is perceived to be acceptable but also on available funding and the time horizon over which extinction is considered. 5. Synthesis and applications. We investigate the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that subpopulation triage can be a natural consequence of robust decision-making. We highlight the need for managers to consider triage not as merely giving up, but as a tool for ensuring species persistence in light of the urgency of most conservation requirements, uncertainty and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park. © 2008 The Authors.
Resumo:
Decision-making for conservation is conducted within the margins of limited funding. Furthermore, to allocate these scarce resources we make assumptions about the relationship between management impact and expenditure. The structure of these relationships, however, is rarely known with certainty. We present a summary of work investigating the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that achieving robustness in conservation decisions can require a triage approach, and emphasize the need for managers to consider triage not as surrendering but as rational decision making to ensure species persistence in light of the urgency of the conservation problems, uncertainty, and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park, Indonesia. To conserve our environment, conservation managers must make decisions in the face of substantial uncertainty. Further, they must deal with the fact that limitations in budgets and temporal constraints have led to a lack of knowledge on the systems we are trying to preserve and on the benefits of the actions we have available (Balmford & Cowling 2006). Given this paucity of decision-informing data there is a considerable need to assess the impact of uncertainty on the benefit of management options (Regan et al. 2005). Although models of management impact can improve decision making (e.g.Tenhumberg et al. 2004), they typically rely on assumptions around which there is substantial uncertainty. Ignoring this 'model uncertainty', can lead to inferior decision-making (Regan et al. 2005), and potentially, the loss of the species we are trying to protect. Current methods used in ecology allow model uncertainty to be incorporated into the model selection process (Burnham & Anderson 2002; Link & Barker 2006), but do not enable decision-makers to assess how this uncertainty would change a decision. This is the basis of information-gap decision theory (info-gap); finding strategies most robust to model uncertainty (Ben-Haim 2006). Info-gap has permitted conservation biology to make the leap from recognizing uncertainty to explicitly incorporating severe uncertainty into decision-making. In this paper we present a summary of McDonald-Madden et al (2008a) who use an info-gap framework to address the impact of uncertainty in the functional representations of biological systems on conservation decision-making. Furthermore, we highlight the importance of two key elements limiting conservation decision-making - funding and knowledge - and how they interact to influence the best management strategy for a threatened species. Copyright © ASCE 2011.
Resumo:
In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis.
Resumo:
Using cameras onboard a robot for detecting a coloured stationary target outdoors is a difficult task. Apart from the complexity of separating the target from the background scenery over different ranges, there are also the inconsistencies with direct and reflected illumination from the sun,clouds, moving and stationary objects. They can vary both the illumination on the target and its colour as perceived by the camera. In this paper, we analyse the effect of environment conditions, range to target, camera settings and image processing on the reported colours of various targets. The analysis indicates the colour space and camera configuration that provide the most consistent colour values over varying environment conditions and ranges. This information is used to develop a detection system that provides range and bearing to detected targets. The system is evaluated over various lighting conditions from bright sunlight, shadows and overcast days and demonstrates robust performance. The accuracy of the system is compared against a laser beacon detector with preliminary results indicating it to be a valuable asset for long-range coloured target detection.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper discusses a robust sensing system developed to find and trade the position of the hoist ropes of a dragline. Draglines are large `walking cranes' used in open-pit coal mining to remove the material covering the coal seam. The rope sensing system developed uses two time-of-flight laser scanners. The finding algorithm uses a novel data association and tracking strategy based on pairing rope data.
Resumo:
To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4′ β-oxygenase (crtW) and 3, 3′ β-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules.
Resumo:
A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.