434 resultados para modèles multi-niveaux
Resumo:
The goal of this project was to develop a mobile application for the iOS platform, that would support the partner of this project, the Brisbane City Council, in stronger engage citizens in participating in urban planning and development projects. The resulting application is an extended version of FixVegas, a system that allows citizens to report maintenance request to the Brisbane City Council through their smartphone. The new version of the system makes all incoming requests publicly available within the application, allows users to support, comment or disapprove of these. As an addition, the concept of the idea has been introduced. Citizens can submit suggestions for improving the city to the municipality, discuss them with other fellow citizens and, ideally, also with Council representatives. The city officials as well are provided with the ability of publishing development project as an idea and let citizens deliberate it. This way, bidirectional communication between these two parties is created. A web interface complements the iPhone application. The system has been developed after the principle of User Centered Design, by assessing user needs, creating and evaluating prototypes and conducting a user study. The study showed that FixVegas2 has been perceived as an enhancement compared to the previous version, and that the idea concept has been received on a positive note. Indepth questions, such as the influence the system could have on community dynamics or the public participation in urban planning projects could only hardly investigated. However, these findings can be achieved by the alternative study designs that have been proposed.
Resumo:
We report on an alternative OCGM interface for a bulletin board, where a user can pin a note or a drawing, and actually shares contents. Exploiting direct and continuous manipulations, opposite to discrete gestures, to explore containers, the proposed interface supports a more natural and immediate interaction. It manages also the presence of different simultaneous users, allowing for the creation of local multimedia contents, the connection to social networks, providing a suitable working environment for cooperative and collaborative tasks in a multi-touch setup, such as touch-tables, interactive walls or multimedia boards
Resumo:
This paper presents large, accurately calibrated and time-synchronised datasets, gathered outdoors in controlled environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. It discusses how the data collection process was designed, the conditions in which these datasets have been gathered, and some possible outcomes of their exploitation, in particular for the evaluation of performance of sensors and perception algorithms for UGVs.
Resumo:
This document describes large, accurately calibrated and time-synchronised datasets, gathered in controlled environmental conditions, using an unmanned ground vehicle equipped with a wide variety of sensors. These sensors include: multiple laser scanners, a millimetre wave radar scanner, a colour camera and an infra-red camera. Full details of the sensors are given, as well as the calibration parameters needed to locate them with respect to each other and to the platform. This report also specifies the format and content of the data, and the conditions in which the data have been gathered. The data collection was made in two different situations of the vehicle: static and dynamic. The static tests consisted of sensing a fixed ’reference’ terrain, containing simple known objects, from a motionless vehicle. For the dynamic tests, data were acquired from a moving vehicle in various environments, mainly rural, including an open area, a semi-urban zone and a natural area with different types of vegetation. For both categories, data have been gathered in controlled environmental conditions, which included the presence of dust, smoke and rain. Most of the environments involved were static, except for a few specific datasets which involve the presence of a walking pedestrian. Finally, this document presents illustrations of the effects of adverse environmental conditions on sensor data, as a first step towards reliability and integrity in autonomous perceptual systems.
Resumo:
Joint venture design teams are formed to combine resources and expertise in order to secure multi-discipline engineering design services on major projects. Bringing together resources from two ordinarily competing companies to form one joint team is however challenging as each parent company brings to the project its own organisational culture, processes and team attitudes. This study examined the factors that impact on forming a successful joint venture project team. Three critical areas were identified from an extensive literature review; Joint Venture Arrangements, Parent Companies and Forming the Team; and a survey was conducted with professionals who have worked in joint venture project teams in the Australian building industry in order to identify factors that affected successful joint venture team formation, and the common lessons learnt. This study reinforced the importance of three key criteria - trust, commitment and compatibility - for partner alignment. The results also identified four key lessons learnt which included; selecting the right resources, enabling a collaborative working environment by way of project office, implementing an independent Joint Venture Manager, and allocating work which is best for project with fees reflecting risk where risk is disproportionate.
Resumo:
In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.
Resumo:
This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presented
Resumo:
A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.
Resumo:
Spectrum sensing of multiple primary user channels is a crucial function in cognitive radio networks. In this paper we propose an optimal, sensing resource allocation algorithm for multi-channel cooperative spectrum sensing. The channel target is implemented as an objective and constraint to ensure a pre-determined number of empty channels are detected for secondary user network operations. Based on primary user traffic parameters, we calculate the minimum number of primary user channels that must be sensed to satisfy the channel target. We implement a hybrid sensing structure by grouping secondary user nodes into clusters and assign each cluster to sense a different primary user channels. We then solve the resource allocation problem to find the optimal sensing configuration and node allocation to minimise sensing duration. Simulation results show that the proposed algorithm requires the shortest sensing duration to achieve the channel target compared to existing studies that require long sensing and cannot guarantee the target.
Resumo:
Capability development is at the heart of creating competitive advantage. This thesis intends to conceptualise Strategic Capability Development as a renewal of an organisation's existing capability in line with the requirements of the market. It followed and compared four product innovation projects within Iran Khodro Company (IKCO), an exemplar of capability development within the Iranian Auto industry. Findings show that the maturation of strategic capability at the organisational level has occurred through a sequence of product innovation projects and by dynamically shaping the learning and knowledge integration processes in accordance with emergence of the new structure within the industry. Accordingly, Strategic Capability Development is conceptualised in an interpretive model. Such findings are useful for development of an explanatory model and a practical capability development framework for managing learning and knowledge across different product innovation projects.
Resumo:
The purpose of this paper is to introduce the concept of hydraulic damage and its numerical integration. Unlike the common phenomenological continuum damage mechanics approaches, the procedure introduced in this paper relies on mature concepts of homogenization, linear fracture mechanics, and thermodynamics. The model is applied to the problem of fault reactivation within resource reservoirs. The results show that propagation of weaknesses is highly driven by the contrasts of properties in porous media. In particular, it is affected by the fracture toughness of host rocks. Hydraulic damage is diffused when it takes place within extended geological units and localized at interfaces and faults.
Resumo:
Network coding is a method for achieving channel capacity in networks. The key idea is to allow network routers to linearly mix packets as they traverse the network so that recipients receive linear combinations of packets. Network coded systems are vulnerable to pollution attacks where a single malicious node floods the network with bad packets and prevents the receiver from decoding correctly. Cryptographic defenses to these problems are based on homomorphic signatures and MACs. These proposals, however, cannot handle mixing of packets from multiple sources, which is needed to achieve the full benefits of network coding. In this paper we address integrity of multi-source mixing. We propose a security model for this setting and provide a generic construction.
Resumo:
Classical results in unconditionally secure multi-party computation (MPC) protocols with a passive adversary indicate that every n-variate function can be computed by n participants, such that no set of size t < n/2 participants learns any additional information other than what they could derive from their private inputs and the output of the protocol. We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted setup (‘semi-ideal’) model, in which the participants are supplied with some auxiliary information (which is random and independent from the participant inputs) ahead of the protocol execution (such information can be purchased as a “commodity” well before a run of the protocol). We present a new MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate polynomial G over a field F, with inputs restricted to non-zero elements of F. The communication complexity of our protocol is O(ℓ · n 2) field elements, where ℓ is the number of non-linear monomials in G. Previous protocols in the trusted setup model require communication proportional to the number of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous protocols for functions with a small number of monomials but a large number of multiplications.
Resumo:
This paper discusses the idea and demonstrates an early prototype of a novel method of interacting with security surveillance footage using natural user interfaces in place of traditional mouse and keyboard interaction. Current surveillance monitoring stations and systems provide the user with a vast array of video feeds from multiple locations on a video wall, relying on the user’s ability to distinguish locations of the live feeds from experience or list based key-value pair of location and camera IDs. During an incident, this current method of interaction may cause the user to spend increased amounts time obtaining situational and location awareness, which is counter-productive. The system proposed in this paper demonstrates how a multi-touch screen and natural interaction can enable the surveillance monitoring station users to quickly identify the location of a security camera and efficiently respond to an incident.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.