648 resultados para genetic monitoring
Resumo:
Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.
Resumo:
Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.
Resumo:
The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.
Resumo:
Knowledge of cable parameters has been well established but a better knowledge of the environment in which the cables are buried lags behind. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Results based on long term continuous field data are given. A probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. This data from field studies can reduce the risk in cable rating decisions and provide a basis for reliable prediction of “hot spot” of an existing cable circuit
Resumo:
In this paper we demonstrate how to monitor a smartphone running Symbian operating system and Windows Mobile in order to extract features for anomaly detection. These features are sent to a remote server because running a complex intrusion detection system on this kind of mobile device still is not feasible due to capability and hardware limitations. We give examples on how to compute relevant features and introduce the top ten applications used by mobile phone users based on a study in 2005. The usage of these applications is recorded by a monitoring client and visualized. Additionally, monitoring results of public and self-written malwares are shown. For improving monitoring client performance, Principal Component Analysis was applied which lead to a decrease of about 80 of the amount of monitored features.
Resumo:
The Kallikrein-related peptidase, KLK4, has been shown to be significantly overexpressed in prostate tumours in numerous studies and is suggested to be a potential biomarker for prostate cancer. KLK4 may also play a role in prostate cancer progression through its involvement in epithelial-mesenchymal transition, a more aggressive phenotype, and metastases to bone. It is well known that genetic variation has the potential to affect gene expression and/or various protein characteristics and hence we sought to investigate the possible role of single nucleotide polymorphisms (SNPs) in the KLK4 gene in prostate cancer. Assessment of 61 SNPs in the KLK4 locus (±10 kb) in approximately 1300 prostate cancer cases and 1300 male controls for associations with prostate cancer risk and/or prostate tumour aggressiveness (Gleason score <7 versus ≥7) revealed 7 SNPs to be associated with a decreased risk of prostate cancer at the Ptrend<0.05 significance level. Three of these SNPs, rs268923, rs56112930 and the HapMap tagSNP rs7248321, are located several kb upstream of KLK4; rs1654551 encodes a non-synonymous serine to alanine substitution at position 22 of the long isoform of the KLK4 protein, and the remaining 3 risk-associated SNPs, rs1701927, rs1090649 and rs806019, are located downstream of KLK4 and are in high linkage disequilibrium with each other (r2≥0.98). Our findings provide suggestive evidence of a role for genetic variation in the KLK4 locus in prostate cancer predisposition.
Resumo:
This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis, where risks are detected during process execution. The approach has been realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of negative process states (faults) to eventuate. Both historical and current process execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a business process management system to prompt the results to process administrators who may take remedial actions. The proposed architecture has been implemented on top of the YAWL system, and evaluated through performance measurements and usability tests with students. The results show that risk conditions can be computed efficiently and that the approach is perceived as useful by the participants in the tests.
Resumo:
Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.
Resumo:
utomatic pain monitoring has the potential to greatly improve patient diagnosis and outcomes by providing a continuous objective measure. One of the most promising methods is to do this via automatically detecting facial expressions. However, current approaches have failed due to their inability to: 1) integrate the rigid and non-rigid head motion into a single feature representation, and 2) incorporate the salient temporal patterns into the classification stage. In this paper, we tackle the first problem by developing a “histogram of facial action units” representation using Active Appearance Model (AAM) face features, and then utilize a Hidden Conditional Random Field (HCRF) to overcome the second issue. We show that both of these methods improve the performance on the task of pain detection in sequence level compared to current state-of-the-art-methods on the UNBC-McMaster Shoulder Pain Archive.