338 resultados para diesel common rail albero motore


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symptoms of psychiatric illness are diverse, as are the causes of the illnesses that cause them. Yet, regardless of the heterogeneity of cause and presentation, a great deal of symptoms can be explained by the failure of a single perceptual function – the reprocessing of ecological perception. It is a central tenet of the ecological theory of perception that we perceive opportunities to act. It has also been found that perception automatically causes actions and thoughts to occur unless this primary action pathway is inhibited. Inhibition allows perceptions to be reprocessed into more appropriate alternative actions and thoughts. Reprocessing of this kind takes place over the entire frontal lobe and it renders action optional. Choice about what action to take (if any) is the basis for the feeling of autonomy and ultimately for the sense-of-self. When thoughts and actions occur automatically (without choice) they appear to originate outside of the self, thereby providing prima facie evidence for some of the bizarre delusions that define schizophrenia such as delusional misidentification, delusions of control and Cotard’s delusion. Automatic actions and thoughts are triggered by residual stimulation whenever reprocessing is insufficient to balance automatic excitatory cues (for whatever reason). These may not be noticed if they are neutral and therefore unimportant whereas actions and thoughts with a positive bias are desirable. Responses to negative stimulus, on the other hand, are always unwelcome, because the actions that are triggered will carry the negative bias. Automatic thoughts may include spontaneous positive feelings of love and joy, but automatic negative thoughts and visualisations are experienced as hallucinations. Not only do these feel like they emerge from elsewhere but they carry a negative bias (they are most commonly critical, rude and are irrationally paranoid). Automatic positive actions may include laughter and smiling and these are welcome. Automatic behaviours that carry a negative bias, however, are unwelcome and like hallucinations, occur without a sense of choice. These include crying, stereotypies, perseveration, ataxia, utilization and imitation behaviours and catatonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulated Rail Joints (IRJs) are safety critical component of the automatic block signalling and broken rail detection systems. IRJs exhibit several failure modes due to complex interaction between the railhead ends and the wheel tread near the gap. These localised zones could not be monitored using automatic sensing devices and hence are resorted to visual inspection only, which is error prone and expensive. In Australia alone currently there are 50,000 IRJs across 80,000 km of rail track. The significance of the problem around the world could thus be realised as there exists one IRJ for each 1.6 km track length. IRJs exhibit extremely low and variable service life; further the track substructure underneath IRJs degrade faster. Thus presence of the IRJs incur significant costs to track maintenance. IRJ failures have also contributed to some train derailments and various traffic disruptions in rail lines. This paper reports a systematic research carried out over seven years on the mechanical behaviour of IRJs for practically relevant outcomes. The research has scientifically established that stiffening the track bed for reduction in impact force is an ill-conceived concept and the most effective method is to reduce the gap size. Further it is established that hardening the railhead ends through laser coating (or other) cannot adequately address the metal flow problem in the long run; modification of the railhead profile is the only appropriate technique to completely eliminate the problem. Part of these outcomes has been adopted by the rail infrastructure owners in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To effectively address the high rate of failure of Insulated Rail Joints (IRJs) in the heavy haul lines, a research plan was designed and implemented with particular attention to understand their mechanical behaviour and deterioration process. In this paper, part of this ongoing research is described. During the past decades many studies have tried to improve the service life of IRJs by introducing a new structural design or material for IRJ components. This paper looks into this problem from a different perspective highlighting the significance of localised condition of track to the loads and responses of the IRJs. Results from a series of field measurements conducted in a rail track within the Australian Rail Track Corporation (ARTC) network are discussed. The interactive effects of IRJ responses and localised track condition are further investigated using the results obtained from numerical simulations. The field measurements and the simulation results provide valuable insight on the influence of track condition to the behaviour of IRJs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a strong genetic risk for late-onset Alzheimer's disease (AD), but so far few gene variants have been identified that reliably contribute to that risk. A newly confirmed genetic risk allele C of the clusterin (CLU) gene variant rs11136000 is carried by ~88% of Caucasians. The C allele confers a 1.16 greater odds of developing late-onset AD than the T allele. AD patients have reductions in regional white matter integrity. We evaluated whether the CLU risk variant was similarly associated with lower white matter integrity in healthy young humans. Evidence of early brain differences would offer a target for intervention decades before symptom onset. We scanned 398 healthy young adults (mean age, 23.6 ± 2.2 years) with diffusion tensor imaging, a variation of magnetic resonance imaging sensitive to white matter integrity in the living brain. We assessed genetic associations using mixed-model regression at each point in the brain to map the profile of these associations with white matter integrity. Each C allele copy of the CLUvariant was associated with lower fractional anisotropy-a widely accepted measure of white matter integrity-in multiple brain regions, including several known to degenerate in AD. These regions included the splenium of the corpus callosum, the fornix, cingulum, and superior and inferior longitudinal fasciculi in both brain hemispheres. Young healthy carriers of the CLU gene risk variant showed a distinct profile of lower white matter integrity that may increase vulnerability to developing AD later in life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08×10 -33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several common genetic variants have recently been discovered that appear to influence white matter microstructure, as measured by diffusion tensor imaging (DTI). Each genetic variant explains only a small proportion of the variance in brain microstructure, so we set out to explore their combined effect on the white matter integrity of the corpus callosum. We measured six common candidate single-nucleotide polymorphisms (SNPs) in the COMT, NTRK1, BDNF, ErbB4, CLU, and HFE genes, and investigated their individual and aggregate effects on white matter structure in 395 healthy adult twins and siblings (age: 20-30 years). All subjects were scanned with 4-tesla 94-direction high angular resolution diffusion imaging. When combined using mixed-effects linear regression, a joint model based on five of the candidate SNPs (COMT, NTRK1, ErbB4, CLU, and HFE) explained ∼ 6% of the variance in the average fractional anisotropy (FA) of the corpus callosum. This predictive model had detectable effects on FA at 82% of the corpus callosum voxels, including the genu, body, and splenium. Predicting the brain's fiber microstructure from genotypes may ultimately help in early risk assessment, and eventually, in personalized treatment for neuropsychiatric disorders in which brain integrity and connectivity are affected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the aetiology of patterns of variation within and covariation across brain regions is key to advancing our understanding of the functional, anatomical and developmental networks of the brain. Here we applied multivariate twin modelling and principal component analysis (PCA) to investigate the genetic architecture of the size of seven subcortical regions (caudate nucleus, thalamus, putamen, pallidum, hippocampus, amygdala and nucleus accumbens) in a genetically informative sample of adolescents and young adults (N=1038; mean age=21.6±3.2years; including 148 monozygotic and 202 dizygotic twin pairs) from the Queensland Twin IMaging (QTIM) study. Our multivariate twin modelling identified a common genetic factor that accounts for all the heritability of intracranial volume (0.88) and a substantial proportion of the heritability of all subcortical structures, particularly those of the thalamus (0.71 out of 0.88), pallidum (0.52 out of 0.75) and putamen (0.43 out of 0.89). In addition, we also found substantial region-specific genetic contributions to the heritability of the hippocampus (0.39 out of 0.79), caudate nucleus (0.46 out of 0.78), amygdala (0.25 out of 0.45) and nucleus accumbens (0.28 out of 0.52). This provides further insight into the extent and organization of subcortical genetic architecture, which includes developmental and general growth pathways, as well as the functional specialization and maturation trajectories that influence each subcortical region. This multivariate twin study identifies a common genetic factor that accounts for all the heritability of intracranial volume (0.88) and a substantial proportion of the heritability of all subcortical structures, particularly those of the thalamus (0.71 out of 0.88), pallidum (0.52 out of 0.75) and putamen (0.43 out of 0.89). In parallel, it also describes substantial region-specific genetic contributions to the heritability of the hippocampus (0.39 out of 0.79), caudate nucleus (0.46 out of 0.78), amygdala (0.25 out of 0.45) and nucleus accumbens (0.28 out of 0.52).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10 -16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10 -12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10 -7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extreme diversity of conditions acting on railways necessitates a variety of experimental approaches to study the critical wear mechanisms that present themselves at the contact interface. This work investigates the effects of contact pressure and geometry in rolling-contact wear tests by using discs with different radii of curvature to simulate the varying contact conditions that may be typically found in the field. It is commonly adapted to line contact interface as it has constant contact pressure. But practical scenario of the rail wheel interface, the contact area increase and contact pressure change as tracks worn off. The tests were conducted without any significant amount of traction, but micro slip was still observed due to contact deformation. Moreover, variation of contact pressure was observed due to contact patch elongation and diameter reduction. Rolling contact fatigue, adhesive and sliding wear were observed on the curved contact interface. The development of different wear regimes and material removal phenomena were analysed using microscopic images in order to broaden the understanding of the wear mechanisms occurring in the rail-wheel contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis improves our insight towards the effects of using biodiesels on the particulate matter emission of diesel engines and contributes to our understanding of their potential adverse health effects. The novelty of this project is the use of biodiesel fuel with controlled chemical composition that enables us to relate changes of physiochemical properties of particles to specific properties of the biodiesel. For the first time, the possibility of a correlation of the volatility and the Reactive Oxygen Species concentration of the particles is investigated versus the saturation, oxygen content and carbon chain length of the fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are currently 23,500 level crossings in Australia, broadly divided into one of two categories: active level crossings which are fully automatic and have boom barriers, alarm bells, flashing lights, and pedestrian gates; and passive level crossings, which are not automatic and aim to control road and pedestrianised walkways solely with stop and give way signs. Active level crossings are considered to be the gold standard for transport ergonomics when grade separation (i.e. constructing an over- or underpass) is not viable. In Australia, the current strategy is to annually upgrade passive level crossings with active controls but active crossings are also associated with traffic congestion, largely as a result of extended closure times. The percentage of time level crossings are closed to road vehicles during peak periods increases with the rise in the frequency of train services. The popular perception appears to be that once a level crossing is upgraded, one is free to wipe their hands and consider the job done. However, there may also be environments where active protection is not enough, but where the setting may not justify the capital costs of grade separation. Indeed, the associated congestion and traffic delay could compromise safety by contributing to the risk taking behaviour by motorists and pedestrians. In these environments it is important to understand what human factor issues are present and ask the question of whether a one size fits all solution is indeed the most ergonomically sound solution for today’s transport needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speculative property developers, criticised for building dog boxes and the slums of tomorrow, are generally hated by urban planners and the public alike. But the doors of state governments are seemingly always open to developers and their lobbyists. Politicians find it hard to say no to the demands of the development industry for concessions because of the contribution housing construction makes to the economic bottom line and because there is a need for well located housing. New supply is also seen as a solution to declining housing affordability. Classical economic theory however is too simplistic for housing supply. Instead, an offshoot of Game Theory - Market Design – not only offers greater insight into apartment supply but also can simultaneously address price, design and quality issues. New research reveals the most significant risk in residential development is settlement risk – when buyers fail to proceed with their purchase despite there being a pre-sale contract. At the point of settlement, the developer has expended all the project funds only to see forecast revenue evaporate. While new buyers may be found, this process is likely to strip the profitability out of the project. As the global financial crisis exposed, buyers are inclined to walk if property values slide. This settlement problem reflects a poor legal mechanism (the pre-sale contract), and a lack of incentive for truthfulness. A second problem is the search costs of finding buyers. At around 10% of project costs, pre-sales are more expensive to developers than finance. This is where Market Design comes in.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies. © 2012 Nature America, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine has been defined as a common disabling primary headache disorder. Epidemiology studies have provided with the undeniable evidence of genetic components as active players in the development of the disease under a polygenic model in which multiple risk alleles exert modest individual effects. Our objective was to test the contribution of a polygenic effect to migraine risk in the Norfolk Island population using a panel of SNPs reported to be disease associated in published migraine GWAS. We also investigated whether individual SNPs were associated with gene expression levels measured in whole-blood. Polygenic scores were calculated in a total of 285 related individuals (74 cases, 211 controls) from the Norfolk Island using 51 SNPs previously reported to be associated with migraine in published GWAS. The association between polygenic score and migraine case-control status was tested using logistic regression. Results indicate that a migraine polygenic risk score was associated with migraine case-control status in this population (P=0.016). This supports the hypothesis that multiple SNPs with weak effects collectively contribute to migraine risk in this population. Amongst the SNPs included in the polygenic model, 4 were associated with the expression of the USMG5 gene, including rs171251 (P = 0.012). Results from this study provide evidence for a polygenic contribution to migraine risk in an isolated population and highlight specific SNPs that regulate the expression of USMG5, a gene critical for mitochondrial function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To The ratcheting behavior of high-strength rail steel (Australian Standard AS1085.1) is studied in this work for the purpose of predicting wear and damage to the rail surface. Historically, researchers have used circular test coupons obtained from the rail head to conduct cyclic load tests, but according to hardness profile data, considerable variation exists across the rail head section. For example, the induction-hardened rail (AS1085.1) shows high hardness (400-430 HV100) up to four-millimeters into the rail head’s surface, but then drops considerably beyond that. Given that cyclic test coupons five millimeters in diameter at the gauge area are usually taken from the rail sample, there is a high probability that the original surface properties of the rail do not apply across the entire test coupon and, therefore, data representing only average material properties are obtained. In the literature, disks (47 mm in diameter) for a twin-disk rolling contact test machine have been obtained directly from the rail sample and used to validate rolling contact fatigue wear models. The question arises: How accurate are such predictions? In this research paper, the effect of rail sampling position on the ratcheting behavior of AS1085.1 rail steel was investigated using rectangular shaped specimens. Uniaxial stress-controlled tests were conducted with samples obtained at four different depths to observe the ratcheting behaviour of each. Micro-hardness measurements of the test coupons were carried out to obtain a constitutive relationship to predict the effect of depth on the ratcheting behaviour of the rail material. This work ultimately assists the selection of valid material parameters for constitutive models in the study of rail surface ratcheting.