381 resultados para crash
Resumo:
Introduction: Within the context of road safety it is important that workload (the portion of a driver’s resources expended to perform a task) remains at a manageable level, preventing overloading and consequently performance decrements. Motorcyclists are over represented in crash statistics where the vehicle operator has a positive, low blood alcohol concentration (BAC) (e.g., 0.05%). The NASA task load index (NASA-TLX) comprises sub-scales that purportedly assess different aspects of subjective workload. It was hypothesized that, compared to a zero BAC condition, low BACs would be associated with increases in workload ratings, and decrements in riding performance. Method: Forty participants (20 novice, 20 experienced) completed simulated motorcycle rides in urban and rural scenarios under low dose BAC conditions (0.00%, 0.02%, 0.05% BAC), while completing a safety relevant peripheral detection task (PDT). Six sub-scales of the NASA-TLX were completed after each ride. Riding performance was assessed using standard deviation of lateral position (SDLP). Hazard perception was assessed by response time to the PDT. Results: Riding performance and hazard perception were affected by alcohol. There was a significant increase in SDLP in the urban scenario and of PDT reaction time in the rural scenario under 0.05% BAC compared to 0.00% BAC. Overall NASA-TLX score increased at 0.02% and 0.05% BAC in the urban environment only, with a trend for novices to rate workload higher than experienced riders. There was a significant main effect of sub-scale on workload ratings in both the urban and rural scenarios. Discussion: 0.05% BAC was associated with decrements in riding performance in the urban environment, decrements in hazard perception in the rural environment, and increases in overall ratings of subjective workload in the urban environment. The workload sub-scales of the NASA-TLX appear to be measuring distinct aspects of motorcycle riding-related workload. Issues of workload and alcohol impaired riding performance are discussed.
Resumo:
Much is known about pedestrian behaviour and crash risk in developed countries. In contrast, the literature on pedestrian crash risk in developing countries reveals wide gaps in knowledge and understanding, and a comprehensive assessment is lacking. In particular, pedestrian behaviour in developing countries is fundamentally different in comparison to developed countries, and is influenced by a variety of less well understood contributing factors, leading to difficulty in modelling and predicting pedestrian crash risk and in turn identifying effective safety countermeasures. This paper provides a comprehensive synthesis of the factors known to influence pedestrian crash risk in developing countries, then focuses on Ethiopia as a specific example. The paper identifies where critical gaps in knowledge exist regarding pedestrian crash risk and associated behaviour in developing countries--a set of knowledge gaps which collectively are significant. The paper concludes by articulating a critical research path moving forward, with the aim to achieve an improved understanding of developing country pedestrian crash risk, and an ultimate goal of identifying effective pedestrian safety countermeasures suited to the unique challenges faced by transport system managers in developing countries.
Resumo:
Macroscopic Fundamental Diagram (MFD) has been proved to exist in large urban road and freeway networks by theoretic method and real data in cities. However hysteresis and scatters have also been found existed both on motorway network and urban road. This paper investigates how the incident variables affect the scatter and shape of the MFD using both the simulated data and the real data collected from the Pacific Motorway M3 in Brisbane, Australia. Three key components of incident are investigated based on the simulated data: incident location, incident duration time and traffic demand. Results based on the simulated data indicate that MFD shape is a property not only of the network itself but also of the incident characteristics variables. MFDs for three types of real incidents (crash, hazard and breakdown) are explored separately. The results based on the empirical data are consistent with the simulated results. The hysteresis phenomenon occurs on both the upstream and the downstream of the incident location, but for opposite hysteresis loops. Gradient of the MFD for the upstream is more than that for the downstream on the incident site, when traffic demand is off peak.
Resumo:
Ethiopia has one of Africa’s fastest growing non-oil producing economies and an increasing level of motorisation (AfDB, OECD, UNDP, & UNECA, 2012). This rapidly increasing mobility has created some unique road safety concerns; however there is scant published information and related commentary (United Nations Economic Commission for Africa, 2009). The objective of this paper is to quantify police-reported traffic crashes in Ethiopia and characterise the existing state of road safety. Six years (July 2005 - June 2011) of police-reported crash data were analysed, consisting of 12,140 fatal and 29,454 injury crashes on the country’s road network. The 12,140 fatal crashes involved 1,070 drivers, 5,702 passengers, and 7,770 pedestrians, totalling 14,542 fatalities, an average of 1.2 road user fatalities per crash. An important and glaring trend that emerges is that more than half of the fatalities in Ethiopia involve pedestrians. The majority of the crashes occur during daytime hours, involve males, and involve persons in the 18-50 age group—Ethiopia’s active workforce. Crashes frequently occur in mid blocks or roadways. The predominant collision between motor vehicles and pedestrians was a rollover on a road tangent section. Failing to observe the priority of pedestrians and speeding were the major causes of crashes attributed by police. Trucks and minibus taxis were involved in the majority of crashes, while automobiles (small vehicles) were less involved in crashes relative to other vehicle types, partially because small vehicles tend to be driven fewer kilometres per annum. These data illustrate and justify a high priority to identify and implement effective programs, policies, and countermeasures focused on reducing pedestrian crashes.
Resumo:
Distraction resulting from mobile phone use whilst driving has been shown to increase the reaction times of drivers, thereby increasing the likelihood of a crash. This study compares the effects of mobile phone conversations on reaction times of drivers responding to traffic events that occur at different points in a driver’s field of view. The CARRS-Q Advanced Driving Simulator was used to test a group of young drivers on various simulated driving tasks including a traffic event that occurred within the driver’s central vision—a lead vehicle braking suddenly—and an event that occurred within the driver’s peripheral—a pedestrian entering a zebra crossing from a footpath. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), and while engaged in hands-free and handheld phone conversations. The drivers were aged between 21 to 26 years and split evenly by gender. Differences in reaction times for an event in a driver’s central vision were not statistically significant across phone conditions, probably due to a lower speed selection by the distracted drivers. In contrast, the reaction times to detect an event that originated in a distracted driver’s peripheral vision were more than 50% longer compared to the baseline condition. A further statistical analysis revealed that deterioration of reaction times to an event in the peripheral vision was greatest for distracted drivers holding a provisional licence. Many critical events originate in a driver’s periphery, including vehicles, bicyclists, and pedestrians emerging from side streets. A reduction in the ability to detect these events while distracted presents a significant safety concern that must be addressed.
Resumo:
The use of mobile phones while driving is more prevalent among young drivers—a less experienced cohort with elevated crash risk. The objective of this study was to examine and better understand the reaction times of young drivers to a traffic event originating in their peripheral vision whilst engaged in a mobile phone conversation. The CARRS-Q Advanced Driving Simulator was used to test a sample of young drivers on various simulated driving tasks, including an event that originated within the driver’s peripheral vision, whereby a pedestrian enters a zebra crossing from a sidewalk. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free and handheld. In addition to driving the simulator each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The participants were 21 to 26 years old and split evenly by gender. Drivers’ reaction times to a pedestrian in the zebra crossing were modelled using a parametric accelerated failure time (AFT) duration model with a Weibull distribution. Also tested where two different model specifications to account for the structured heterogeneity arising from the repeated measures experimental design. The Weibull AFT model with gamma heterogeneity was found to be the best fitting model and identified four significant variables influencing the reaction times, including phone condition, driver’s age, license type (Provisional license holder or not), and self-reported frequency of usage of handheld phones while driving. The reaction times of drivers were more than 40% longer in the distracted condition compared to baseline (not distracted). Moreover, the impairment of reaction times due to mobile phone conversations was almost double for provisional compared to open license holders. A reduction in the ability to detect traffic events in the periphery whilst distracted presents a significant and measurable safety concern that will undoubtedly persist unless mitigated.
Resumo:
Singapore is a highly urbanized city-state country where walking is an important mode of travel. Pedestrians form about 25% of road fatalities every year, making them one of the most vulnerable road user groups in Singapore. Engineering measures like provision of overhead pedestrian crossings and raised zebra crossings tend to address pedestrian safety in general, but there may be occasions where pedestrians are particularly vulnerable so that targeted interventions are more appropriate. The objective of this study is to identify factors and situations that affect the injury severity of pedestrians involved in traffic crashes. Six years of crash data from 2003 to 2008 containing around four thousands pedestrian crashes at roadway segments were analyzed. Injury severity of pedestrians—recorded as slight injury, major injury and fatal—were modeled as a function of roadway characteristics, traffic features, environmental factors and pedestrian demographics by an ordered probit model. Results suggest that the injury severity of pedestrians involved in crashes during night time is higher indicating that pedestrian visibility during night is a key issue in pedestrian safety. The likelihood of fatal or serious injuries is higher for crashes on roads with high speed limit, center and median lane of multi-lane roads, school zones, roads with two-way divided traffic type, and when pedestrians cross the roads. Elderly pedestrians appear to be involved in fatal and serious injury crashes more when they attempt to cross the road without using nearby crossing facilities. Specific countermeasures are recommended based on the findings of this study.
Resumo:
Fatigue/sleepiness is recognised as an important contributory factor in fatal and serious injury road traffic incidents (RTIs), however, identifying fatigue/sleepiness as a causal factor remains an uncertain science. Within Australia attending police officers at a RTI report the causal factors; one option is fatigue/sleepiness. In some Australian jurisdictions police incident databases are subject to post hoc analysis using a proxy definition for fatigue/sleepiness. This secondary analysis identifies further RTIs caused by fatigue/sleepiness not initially identified by attending officers. The current study investigates the efficacy of such proxy definitions for attributing fatigue/sleepiness as a RTI causal factor. Over 1600 Australian drivers were surveyed regarding their experience and involvement in fatigue/sleep-related RTIs and near-misses during the past five years. Driving while fatigued/sleepy had been experienced by the majority of participants (66.0% of participants). Fatigue/sleep-related near misses were reported by 19.1% of participants, with 2.4% being involved in a fatigue/sleep-related RTI. Examination of the characteristics for the most recent event (either a near miss or crash) found that the largest proportion of incidents (28.0%) occurred when commuting to or from work, followed by social activities (25.1%), holiday travel (19.8%), or for work purposes (10.1%). The fatigue/sleep related RTI and near-miss experience of a representative sample of Australian drivers does not reflect the proxy definitions used for fatigue/sleepiness identification. In particular those RTIs that occur in urban areas and at slow speeds may not be identified. While important to have a strategy for identifying fatigue/sleepiness related RTIs proxy measures appear best suited to identifying specific subsets of such RTIs.
Resumo:
The need to address on-road motorcycle safety in Australia is important due to the disproportionately high percentage of riders and pillions killed and injured each year. One approach to preventing motorcycle-related injury is through training and education. However, motorcycle rider training lacks empirical support as an effective road safety countermeasure to reduce crash involvement. Previous reviews have highlighted that risk-taking is a contributing factor in many motorcycle crashes, rather than merely a lack of vehicle-control skills (Haworth & Mulvihill, 2005; Jonah, Dawson & Bragg, 1982; Watson et al, 1996). Hence, though the basic vehicle-handling skills and knowledge of road rules that are taught in most traditional motorcycle licence training programs may be seen as an essential condition of safe riding, they do not appear to be sufficient in terms of crash reduction. With this in mind there is considerable scope for the improvement of program focus and content for rider training and education. This program of research examined an existing traditional pre-licence motorcycle rider training program and formatively evaluated the addition of a new classroom-based module to address risky riding; the Three Steps to Safer Riding program. The pilot program was delivered in the real world context of the Q-Ride motorcycle licensing system in the state of Queensland, Australia. Three studies were conducted as part of the program of research: Study 1, a qualitative investigation of delivery practices and student learning needs in an existing rider training course; Study 2, an investigation of the extent to which an existing motorcycle rider training course addressed risky riding attitudes and motives; and Study 3, a formative evaluation of the new program. A literature review as well as the investigation of learning needs for motorcyclists in Study 1 aimed to inform the initial planning and development of the Three Steps to Safer Riding program. Findings from Study 1 suggested that the training delivery protocols used by the industry partner training organisation were consistent with a learner-centred approach and largely met the learning needs of trainee riders. However, it also found that information from the course needs to be reinforced by on-road experiences for some riders once licensed and that personal meaning for training information was not fully gained until some riding experience had been obtained. While this research informed the planning and development of the new program, a project team of academics and industry experts were responsible for the formulation of the final program. Study 2 and Study 3 were conducted for the purpose of formative evaluation and program refinement. Study 2 served primarily as a trial to test research protocols and data collection methods with the industry partner organisation and, importantly, also served to gather comparison data for the pilot program which was implemented with the same rider training organisation. Findings from Study 2 suggested that the existing training program of the partner organisation generally had a positive (albeit small) effect on safety in terms of influencing attitudes to risk taking, the propensity for thrill seeking, and intentions to engage in future risky riding. However, maintenance of these effects over time and the effects on riding behaviour remain unclear due to a low response rate upon follow-up 24 months after licensing. Study 3 was a formative evaluation of the new pilot program to establish program effects and possible areas for improvement. Study 3a examined the short term effects of the intervention pilot on psychosocial factors underpinning risky riding compared to the effects of the standard traditional training program (examined in Study 2). It showed that the course which included the Three Steps to Safer Riding program elicited significantly greater positive attitude change towards road safety than the existing standard licensing course. This effect was found immediately following training, and mean scores for attitudes towards safety were also maintained at the 12 month follow-up. The pilot program also had an immediate effect on other key variables such as risky riding intentions and the propensity for thrill seeking, although not significantly greater than the traditional standard training. A low response rate at the 12 month follow-up unfortunately prevented any firm conclusions being drawn regarding the impact of the pilot program on self-reported risky riding once licensed. Study 3a further showed that the use of intermediate outcomes such as self-reported attitudes and intentions for evaluation purposes provides insights into the mechanisms underpinning risky riding that can be changed by education and training. A multifaceted process evaluation conducted in Study 3b confirmed that the intervention pilot was largely delivered as designed, with course participants also rating most aspects of training delivery highly. The complete program of research contributed to the overall body of knowledge relating to motorcycle rider training, with some potential implications for policy in the area of motorcycle rider licensing. A key finding of the research was that psychosocial influences on risky riding can be shaped by structured education that focuses on awareness raising at a personal level and provides strategies to manage future riding situations. However, the formative evaluation was mainly designed to identify areas of improvement for the Three Steps to Safer Riding program and found several areas of potential refinement to improve future efficacy of the program. This included aspects of program content, program delivery, resource development, and measurement tools. The planned future follow-up of program participants' official crash and traffic offence records over time may lend further support for the application of the program within licensing systems. The findings reported in this thesis offer an initial indication that the Three Steps to Safer Riding is a useful resource to accompany skills-based training programs.
Resumo:
Context Alcohol-related traffic offences and associated trauma have attracted attention in China in recent years, culminating in changes to national legislation in May 2011. Harsher penalties were introduced, particularly for offences where blood alcohol concentration (BAC) levels above 80mg/100mL are recorded. Deemed to be drunk under the law, this is now a criminal offence attracting penalties including large monetary fines, licence suspension for 5 years and imprisonment. Objective This paper outlines key statistics about alcohol-related road trauma in Zhejiang Province and strategies used to combat drink- and drunk-driving. Key Outcomes Zhejiang Province, in China’s south east, has a population of approximately 54, 426,000; 22.36% hold a driving licence. Rapid motorisation is occurring there. In 2011, 1,383,318 new licences were issued, representing a 16.78% increase from the previous year. In 2012, there were a total of 65,000 police officers throughout the Province, 12,307 of whom (18.9%) were traffic police. Responsibility for conducting alcohol testing is the responsibility of all traffic police. The number of alcohol breath tests conducted per year was not available. However, traffic police are actively enforcing alcohol-related laws. In 2011, 89,228 drivers were charged with drink-driving (DUI;20-80mg/100 mL) and 10,014 with the more serious drunk-driving offence (DWI;>80mg/100mL) (Zhejiang Traffic Management Department, 2012). These numbers decreased from the previous year (221,262 and 26,390 respectively). For all crashes recorded in 2011 (n=20,176), 2% involved alcohol-impaired road users. Information on the role of alcohol in crashes from previous years was not available. Discussion Various strategies are employed to detect alcohol-impaired drivers including: targeting vehicles from hotels/restaurants; using sense of smell to screen drivers for further testing; passive alcohol sensors to test drivers; and blood tests for crash-involved drivers where a fatality occurred. Although resources to promote road safety are limited, various government initiatives promote awareness of the dangers of alcohol-related driving and more are needed in future.
Resumo:
Previous research has shown that mobile phone use while driving can increase crash risk fourfold while texting results in 23 times greater crash risk for heavy vehicle drivers. However, mobile phone use has changed in recent years with the functional capabilities of smart phones to now also include a range of other common behaviours while driving such as using Facebook, emailing, the use of ‘apps’, and GPS. Research continues to show performance decrements for many such behaviours while driving, however many Australians still openly admit to illegal mobile phone use while driving despite ongoing enforcement efforts and public awareness campaigns. Of most concern are young drivers. ‘Apps’ available to restrict mobile phone use while in motion do not prevent use while a driver is stopped at traffic lights, so are therefore not a wholly viable solution. Vehicle manufacturers continue to develop in-vehicle technology to minimise distraction, however communication with the ‘outside world’ while driving is also perhaps a strong selling point for vehicles. Hence, the safety message that drivers should focus on the driving task solely and not use communication devices is unlikely to ever be internalised by many drivers. This paper reviews the available literature on the topic and argues that a better understanding of perceptions of mobile phone use while driving and motives for use are required to inform public awareness campaign development for specific road user groups. Additionally, illegal phone use while driving may be reinforced by not being apprehended (punishment avoidance), therefore stronger deterrence-focussed messages may also be beneficial.
Resumo:
One strategy that can be used by older drivers to guard against age-related declines in driving capability is to regulate their driving. This strategy presumes that self-judgments of driving capability are realistic. We found no significant relationships between older drivers’ hazard perception skill ratings and performance on an objective and validated video-based hazard perception test, even when self-ratings of performance on specific scenarios in the test were used. Self-enhancement biases were found across all components of driving skill, including hazard perception. If older drivers’ judgments of their driving capability are unrealistic, then this may compromise the effectiveness of any self-restriction strategies to reduce crash risk.
Resumo:
Speeding remains a pervasive road safety problem, increasing both crash frequency and severity. Advertising countermeasures which aim to change individuals’ attitudes and behaviours are a key component in the array of countermeasures aimed at reducing this risky behaviour. Enhancing individuals’ perceptions of the personal relevance of such messages is important for increasing persuasiveness. This study examined what males and females reported as the most concerning aspects associated with (i) receiving a speeding fine, (ii) losing one’s license, and (iii) being involved in a crash. For each of these outcomes, a range of specific and appropriate aspects were assessed. For instance, in relation to receiving a fine, individuals reported the extent to which they would, for example, feel concerned about losing demerit points and paying more in insurance premiums. An online survey of 751 drivers (579 males; 16-79 years) was administered. When controlling for age, overall significant gender differences were found in relation to two of the three outcomes; receiving a fine and being in a crash. Follow-up tests of univariate effects revealed that females consistently reported being significantly more concerned than males on all aspects. Thus, for being fined, females were significantly more concerned with, for example, being caught and receiving a ticket in the mail; while, for being in a crash, specific aspects included, for example, injuring/killing oneself and seeing oneself as not a good/safe driver. The findings are discussed in terms of their implications for developing well-targeted messages aimed at discouraging drivers from speeding.
Resumo:
Concealed texting (CT) while driving involves a conscious effort to hide one’s texting while obvious texting (OT) does not involve such efforts to conceal the behaviour. Young drivers are the most frequent users of mobile phones while driving which is associated with heightened crash risk. This study investigated the extent to which CT and OT may be discrete behaviours to ascertain whether countermeasures would need to utilise distinct approaches. An extended Theory of Planned Behaviour (TPB) including moral norm, mobile phone involvement, and anticipated regret guided the research. Participants (n = 171) were aged 17 to 25 years, owned a mobile phone, had a current driver’s licence, and resided in Queensland. A repeated measures MANOVA found significant differences between CT and OT on all standard and extended TPB constructs. Hierarchical multiple regression analyses showed the standard TPB constructs accounted for 68.7% and 54.6% of the variance in intentions to engage in CT and OT, respectively. The extended predictors contributed additional variance in intentions over and above the standard TPB constructs. Further, in the final regression model, differences emerged in the significant predictors of each type of texting. These findings provide initial evidence that CT and OT are distinct behaviours. This distinction is important to the extent that it may influence the nature of advertising countermeasures aimed at reducing/preventing young drivers’ engagement in these risky behaviours.
Resumo:
Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms.