289 resultados para Word recognition.
Resumo:
Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin < HAP < HAP-Pol. Furthermore, hybrid molecular dynamics and steered molecular dynamics simulations validated that BMP-2 tightly anchored on the HAP-Pol surface with a relative loosened conformation, but the HAP-Sin surface induced a compact conformation of BMP-2. In conclusion, the nanostructured HAPs can modulate the way of adsorption of rhBMP-2, and thus the recognition of BMPR-IA and the bioactivity of rhBMP-2. These findings can provide insightful suggestions for the future design and fabrication of rhBMP-2-based scaffolds/implants.
Resumo:
Background Pollens of subtropical grasses, Bahia (Paspalum notatum), Johnson (Sorghum halepense), and Bermuda (Cynodon dactylon), are common causes of respiratory allergies in subtropical regions worldwide. Objective To evaluate IgE cross-reactivity of grass pollen (GP) found in subtropical and temperate areas. Methods Case and control serum samples from 83 individuals from the subtropical region of Queensland were tested for IgE reactivity with GP extracts by enzyme-linked immunosorbent assay. A randomly sampled subset of 21 serum samples from patients with subtropical GP allergy were examined by ImmunoCAP and cross-inhibition assays. Results Fifty-four patients with allergic rhinitis and GP allergy had higher IgE reactivity with P notatum and C dactylon than with a mixture of 5 temperate GPs. For 90% of 21 GP allergic serum samples, P notatum, S halepense, or C dactylon specific IgE concentrations were higher than temperate GP specific IgE, and GP specific IgE had higher correlations of subtropical GP (r = 0.771-0.950) than temperate GP (r = 0.317-0.677). In most patients (71%-100%), IgE with P notatum, S halepense, or C dactylon GPs was inhibited better by subtropical GP than temperate GP. When the temperate GP mixture achieved 50% inhibition of IgE with subtropical GP, there was a 39- to 67-fold difference in concentrations giving 50% inhibition and significant differences in maximum inhibition for S halepense and P notatum GP relative to temperate GP. Conclusion Patients living in a subtropical region had species specific IgE recognition of subtropical GP. Most GP allergic patients in Queensland would benefit from allergen specific immunotherapy with a standardized content of subtropical GP allergens.
Resumo:
We propose a novel multiview fusion scheme for recognizing human identity based on gait biometric data. The gait biometric data is acquired from video surveillance datasets from multiple cameras. Experiments on publicly available CASIA dataset show the potential of proposed scheme based on fusion towards development and implementation of automatic identity recognition systems.
What triggers problem recognition? An exploration on young Australian male problematic online gamers
Resumo:
Help-seeking is a complex decision-making process that first begins with problem recognition. However, little is understood about the conceptualisation of the helpseeking process and the triggers of problem recognition. This research proposes the use of the Critical Incident Technique (CIT) to examine and classify incidents that serve as key triggers of problem recognition among young Australian male problematic online gamers. The research provides a classification of five different types of triggers that will aid social marketers into developing effective early detection, prevention and treatment focused social marketing interventions.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
Resumo:
In the field of face recognition, sparse representation (SR) has received considerable attention during the past few years, with a focus on holistic descriptors in closed-set identification applications. The underlying assumption in such SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such an assumption is easily violated in the face verification scenario, where the task is to determine if two faces (where one or both have not been seen before) belong to the same person. In this study, the authors propose an alternative approach to SR-based face verification, where SR encoding is performed on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which then form an overall face descriptor. Owing to the deliberate loss of spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment and various image deformations. Within the proposed framework, they evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN) and an implicit probabilistic technique based on Gaussian mixture models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, on both the traditional closed-set identification task and the more applicable face verification task. The experiments also show that l1-minimisation-based encoding has a considerably higher computational cost when compared with SANN-based and probabilistic encoding, but leads to higher recognition rates.
Resumo:
This thesis investigates the use of fusion techniques and mathematical modelling to increase the robustness of iris recognition systems against iris image quality degradation, pupil size changes and partial occlusion. The proposed techniques improve recognition accuracy and enhance security. They can be further developed for better iris recognition in less constrained environments that do not require user cooperation. A framework to analyse the consistency of different regions of the iris is also developed. This can be applied to improve recognition systems using partial iris images, and cancelable biometric signatures or biometric based cryptography for privacy protection.
Resumo:
This chapter interrogates what recognition of prior learning (RPL) can and does mean in the higher education sector—a sector in the grip of the widening participation agenda and an open access age. The chapter discusses how open learning is making inroads into recognition processes and examines two studies in open learning recognition. A case study relating to e-portfolio-style RPL for entry into a Graduate Certificate in Policy and Governance at a metropolitan university in Queensland is described. In the first instance, candidates who do not possess a relevant Bachelor degree need to demonstrate skills in governmental policy work in order to be eligible to gain entry to a Graduate Certificate (at Australian Qualifications Framework Level 8) (Australian Qualifications Framework Council, 2013, p. 53). The chapter acknowledges the benefits and limitations of recognition in open learning and those of more traditional RPL, anticipating future developments in both (or their convergence).
Resumo:
In this paper, a new high precision focused word sense disambiguation (WSD) approach is proposed, which not only attempts to identify the proper sense for a word but also provides the probabilistic evaluation for the identification confidence at the same time. A novel Instance Knowledge Network (IKN) is built to generate and maintain semantic knowledge at the word, type synonym set and instance levels. Related algorithms based on graph matching are developed to train IKN with probabilistic knowledge and to use IKN for probabilistic word sense disambiguation. Based on the Senseval-3 all-words task, we run extensive experiments to show the performance enhancements in different precision ranges and the rationality of probabilistic based automatic confidence evaluation of disambiguation. We combine our WSD algorithm with five best WSD algorithms in senseval-3 all words tasks. The results show that the combined algorithms all outperform the corresponding algorithms.
Resumo:
This study investigates the use of unsupervised features derived from word embedding approaches and novel sequence representation approaches for improving clinical information extraction systems. Our results corroborate previous findings that indicate that the use of word embeddings significantly improve the effectiveness of concept extraction models; however, we further determine the influence that the corpora used to generate such features have. We also demonstrate the promise of sequence-based unsupervised features for further improving concept extraction.
Resumo:
This paper describes a vision-only system for place recognition in environments that are tra- versed at different times of day, when chang- ing conditions drastically affect visual appear- ance, and at different speeds, where places aren’t visited at a consistent linear rate. The ma- jor contribution is the removal of wheel-based odometry from the previously presented algo- rithm (SMART), allowing the technique to op- erate on any camera-based device; in our case a mobile phone. While we show that the di- rect application of visual odometry to our night- time datasets does not achieve a level of perfor- mance typically needed, the VO requirements of SMART are orthogonal to typical usage: firstly only the magnitude of the velocity is required, and secondly the calculated velocity signal only needs to be repeatable in any one part of the environment over day and night cycles, but not necessarily globally consistent. Our results show that the smoothing effect of motion constraints is highly beneficial for achieving a locally consis- tent, lighting-independent velocity estimate. We also show that the advantage of our patch-based technique used previously for frame recogni- tion, surprisingly, does not transfer to VO, where SIFT demonstrates equally good performance. Nevertheless, we present the SMART system us- ing only vision, which performs sequence-base place recognition in extreme low-light condi- tions where standard 6-DOF VO fails and that improves place recognition performance over odometry-less benchmarks, approaching that of wheel odometry.
Resumo:
Deep convolutional network models have dominated recent work in human action recognition as well as image classification. However, these methods are often unduly influenced by the image background, learning and exploiting the presence of cues in typical computer vision datasets. For unbiased robotics applications, the degree of variation and novelty in action backgrounds is far greater than in computer vision datasets. To address this challenge, we propose an “action region proposal” method that, informed by optical flow, extracts image regions likely to contain actions for input into the network both during training and testing. In a range of experiments, we demonstrate that manually segmenting the background is not enough; but through active action region proposals during training and testing, state-of-the-art or better performance can be achieved on individual spatial and temporal video components. Finally, we show by focusing attention through action region proposals, we can further improve upon the existing state-of-the-art in spatio-temporally fused action recognition performance.
Resumo:
The constitutional recognition campaign has received party-wide support and its efforts have been promoted by Prime Minister Tony Abbott as being something that would ‘complete our Constitution.’ The broader rhetoric surrounding this campaign suggests that it will result in a just, albeit delayed, recognition of indigenous peoples in the Australian legal system. However, beneath the surface of this seemingly benevolent gesture, is a reaffirmation of the colonial subordination and erasure of the several hundred original nations’ peoples and ways of being.
Resumo:
Recent advances in neural language models have contributed new methods for learning distributed vector representations of words (also called word embeddings). Two such methods are the continuous bag-of-words model and the skipgram model. These methods have been shown to produce embeddings that capture higher order relationships between words that are highly effective in natural language processing tasks involving the use of word similarity and word analogy. Despite these promising results, there has been little analysis of the use of these word embeddings for retrieval. Motivated by these observations, in this paper, we set out to determine how these word embeddings can be used within a retrieval model and what the benefit might be. To this aim, we use neural word embeddings within the well known translation language model for information retrieval. This language model captures implicit semantic relations between the words in queries and those in relevant documents, thus producing more accurate estimations of document relevance. The word embeddings used to estimate neural language models produce translations that differ from previous translation language model approaches; differences that deliver improvements in retrieval effectiveness. The models are robust to choices made in building word embeddings and, even more so, our results show that embeddings do not even need to be produced from the same corpus being used for retrieval.
Resumo:
This Article analyzes the recognition and enforcement of cross-border insolvency judgments from the United States, United Kingdom, and Australia to determine whether the UNCITRAL Model Law’s goal of modified universalism is currently being practiced, and subjects the Model Law to analysis through the lens of international relations theories to elaborate a way forward. We posit that courts could use the express language of the Model Law text to confer recognition and enforcement of foreign insolvency judgments. The adoption of our proposal will reduce costs, maximize recovery for creditors, and ensure predictability for all parties.