439 resultados para Water Escape
Resumo:
This paper discusses the Townsville City Council Dry Tropics Water Smart (DTWS) initiative, developed by TCC Integrated Sustainability Services (ISS) and Townsville Water, and informed by The University of Adelaide. The program draws on many years of experience by the TCC team to blend key community-based research approaches in order to develop this residential outdoor water conservation program. Several community pilots have been conducted to test different behaviour change strategies and messages. This paper outlines recent steps taken to develop the community trials, as guided by a combination of behaviour change theories including community-based social marketing and thematic communications methods. Some preliminary results are outlined focused on community uptake of different strategies, community perceptions of communication materials, and some insights into the effectiveness of outdoor water hardware.
Resumo:
For many years materials such as quarried sand, anthracite, and granular activated carbon have been the principal media-products traditionally used in water and wastewater filtration plants. Pebble Matrix Filtration (PMF) is a novel non-chemical, sustainable pre-treatment method of protecting Slow Sand Filters (SSF) from high turbidity during heavy monsoon periods. PMF uses sand and pebbles as the filter media and the sustainability of this new technology might depend on availability and supply of pebbles and sand, both finite resources. In many countries there are two principal methods of obtaining pebbles and sand, namely dredging from rivers and beaches, and due to the scarcity of these resources in some countries the cost of pebbles is often 4-5 times higher than that of sand. In search for an alternative medium to pebbles after some preliminary laboratory tests conducted in Colombo-Sri Lanka, Poznan-Poland and Cambridge-UK, a 100-year-old brick factory near Sudbury, Suffolk, has produced hand-made clay pebbles satisfying the PMF quality requirements. As an alternative to sand, crushed recycled glass from a UK supplier was used and the PMF system was operated together with hand-made clay balls in the laboratory for high turbidity removal effectively. The results of laboratory experiments with alternative media are presented in this paper. There are potential opportunities for recycled crushed glass and clay ball manufacturing processes in some countries where they can be used as filter media.
Resumo:
Most urban dwelling Australians take secure and safe water supplies for granted. That is, they have an adequate quantity of water at a quality that can be used by people without harm from human and animal wastes, salinity and hardness or pollutants from agriculture and manufacturing industries. Australia wide urban and peri-urban dwellers use safe water for all domestic as well as industrial purposes. However, this is not the situation remote regions in Australia where availability and poor quality water can be a development constraint. Nor is it the case in Sri Lanka where people in rural regions are struggling to obtain a secure supply of water, irrespective of it being safe because of the impact of faecal and other contaminants. The purposes of this paper are to overview: the population and environmental health challenges arising from the lack of safe water in rural and remote communities; response pathways to address water quality issues; and the status of and need for integrated catchment management (ICM) in selected remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. Conclusions are drawn that focus on the opportunity for inter-regional collaborations between Australia and Sri Lanka for the delivery of safe water through ICM.
Resumo:
The legal arrangements for the management of water resources are currently a complex matrix of rules of various kinds. These rules perform a diverse range of functions. Some are part of what may be described as the macro-legal system for the governance of water resources. This includes paralegal rules in the form of statements of value, objective, outcome or principles . Others are part of the micro-legal system for the governance of water resources. This includes traditional legal rules in the form of statements of standards in relation to individual conduct, behaviour or decision making. These legal arrangements may be international, regional, national or local. Accordingly some apply to nation states within the international community. Others apply to the regulatory agencies making decisions about water resources within nation states. Ultimately most of these legal arrangements apply to those who use and develop water resources for particular purposes and in particular locations. In accordance with this framework, rules explain how water resources should be used in particular circumstances and how decisions should be made to ensure the effective planning and regulation of water resources.
Resumo:
Unstable density-driven flow can lead to enhanced solute transport in groundwater. Only recently has the complex fingering pattern associated with free convection been documented in field settings. Electrical resistivity (ER) tomography has been used to capture a snapshot of convective instabilities at a single point in time, but a thorough transient analysis is still lacking in the literature. We present the results of a 2 year experimental study at a shallow aquifer in the United Arab Emirates that was designed to specifically explore the transient nature of free convection. ER tomography data documented the presence of convective fingers following a significant rainfall event. We demonstrate that the complex fingering pattern had completely disappeared a year after the rainfall event. The observation is supported by an analysis of the aquifer halite budget and hydrodynamic modeling of the transient character of the fingering instabilities. Modeling results show that the transient dynamics of the gravitational instabilities (their initial development, infiltration into the underlying lower-density groundwater, and subsequent decay) are in agreement with the timing observed in the time-lapse ER measurements. All experimental observations and modeling results are consistent with the hypothesis that a dense brine that infiltrated into the aquifer from a surficial source was the cause of free convection at this site, and that the finite nature of the dense brine source and dispersive mixing led to the decay of instabilities with time. This study highlights the importance of the transience of free convection phenomena and suggests that these processes are more rapid than was previously understood.
Resumo:
This research has developed an innovative road safety barrier system that will enhance roadside safety. In doing so, the research developed new knowledge in the field of road crash mitigation for high speed vehicle impact involving plastic road safety barriers. This road safety barrier system has the required feature to redirecting an errant vehicle with limited lateral displacement. Research was carried out using dynamic computer simulation technique support by experimental testing. Future road safety barrier designers may use the information in this research as a design guideline to improve the performance and redirectional capability of the road safety barrier system. This will lead to better safety conditions on the roadways and potentially save lives.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement and vehicle redirectionality. Actual PWFB test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many was done pertaining to PWFB. This research probes a new technique to model joints in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that are used to prevent errant vehicles from penetrating into temporary construction zones on roadways. A numerical model of the composite PWFB, consisting of a plastic shell, steel frame, water and foam was developed and validated against results from full scale experimental tests. This model can be extended to larger scale impact cases, specifically ones that include actual vehicle models. The cost-benefit of having a validated numerical model is significant and this allows the road barrier designer to conduct extensive tests via numerical simulations prior to standard impact tests Effects of foam cladding as additional energy absorption material in the PWFB was investigated. Different types of foam were treated and it was found that XPS foam was the most suitable foam type. Results from this study will aid PWFB designers in developing new generation of roadside structures which will provide enhanced road safety.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular “wall” representative of a 30 m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier “wall” and the vehicle was obtained and the results show that a rotational stiffness of 3000 kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety.
Resumo:
The physical, emotional, educational and social developmental challenges of adolescence can be associated with high levels of emotional vulnerability. Thus, the development of effective emotion-regulation strategies is crucial during this time period. Young people commonly use music to identify, express and regulate their emotions. Modern mobile technology provides an engaging, easily accessible means of assisting young people through music. A systematic contextual review identified 20 iPhone applications addressing emotions through music and two independent raters, using the Mobile App Rating Scale (MARS), evaluated the quality of the apps. Their characteristics, key features and overall quality will be presented. Three participatory design workshops (N=13, 6 males, 7 females; age 15-25) were conducted to explore young people’s use of music to enhance wellbeing. Young people were also asked to trial existing mood and music apps and to conceptualise their ultimate mood targeting music application. A thematic analysis of the participatory design workshops content identified the following music affect-regulation strategies: relationship building, modifying cognitions, modifying emotions, and immersing in emotions. The application of the key learnings from the mobile app review and participatory design workshops and the design and development of the music eScape app were presented and implications for future research was discussed.
Resumo:
Research Background Young people’s avid use of mobile technologies in daily life has led to an increase in the design and research on mHealth (mobile health) interventions targeting young people. ‘Music eScape’ is a mobile based mood regulation app that uses an innovative approach to promoting young people’s wellbeing using music. Research Question The design, research, development and evaluation of ‘Music eScape’ addressed a number of research questions from across the fields of Psychology and Interactive and Visual Design. The specific design research question addressed was: How can interaction and visual design be utilized to promote and enable young people to effectively regulate their mood using music and how can the new design further promote their experience of empowerment, control and agency over actively directing their mood journey? Research Contribution Innovation and New Knowledge Through its unique visual interface design and interactivity, the application presents a novel approach to promoting young people’s wellbeing using music and a specific function that allows users to ‘draw’ their mood journey in order to generate a playlist. The mobile app is the first to contain a function that enables users to plan their mood journey and exercise a sense of agency, intentional choice and control over the mood shift and by extension, their wellbeing. The feature ‘drawing’ interface was designed by Oksana Zelenko using participatory design research and Russell’s circumplex model of affect (1980) to inform the key visual design concept and underpinning interaction design. Research Significance The significance of the design research component within the larger interdisciplinary practices that have informed ‘Music eScape’ (e.g. field of psychology, reported through journal articles and other related outcomes), is the unique visual and interactive presentation of participant data and music therapy research within the app interface and interaction design which improves and increases young people’s engagement with the health messages it contains. The industry quality standard is further demonstrated by the launch on Apple iTunes. This demonstrates the application meets the high professional requirements for national release and meets international standards. The app also creates a new benchmark for the quality of health apps on the market as it marks the industry release of a trialled evidence-based mHealth intervention co-designed with young people.
Resumo:
The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland’s CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are: (1) water used for municipal purposes, (2) recreational water activities in rivers, (3) occupational exposures, (4) water extracted from contaminated aquifers, and; (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.
Resumo:
This project was a step forward in developing the scientific basis for a methodology to assess the resilience of water supply systems under the impacts of climate change. The improved measure of resilience developed in this project provides an approach to assess the ability of water supply systems to absorb the pressure due changing climate while sustaining supply, and their speed of recovery in case of failure. The approach developed can be applied to any generic water supply system.
Resumo:
This chapter investigates a variety of water quality assessment tools for reservoirs with balanced/unbalanced monitoring designs and focuses on providing informative water quality assessments to ensure decision-makers are able to make risk-informed management decisions about reservoir health. In particular, two water quality assessment methods are described: non-compliance (probability of the number of times the indicator exceeds the recommended guideline) and amplitude (degree of departure from the guideline). Strengths and weaknesses of current and alternative water quality methods will be discussed. The proposed methodology is particularly applicable to unbalanced designs with/without missing values and reflects the general conditions and is not swayed too heavily by the occasional extreme value (very high or very low quality). To investigate the issues in greater detail, we use as a case study, a reservoir within South-East Queensland (SEQ), Australia. The purpose here is to obtain an annual score that reflected the overall water quality, temporally, spatially and across water quality indicators for each reservoir.