452 resultados para Underpinning walls
Resumo:
Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.
Resumo:
Traditionally the fire resistance rating of LSF wall systems is based on approximate prescriptive methods developed using limited fire tests. Therefore a detailed research study into the performance of load bearing LSF wall systems under standard fire conditions was undertaken to develop improved fire design rules. It used the extensive fire performance results of eight different LSF wall systems from a series of full scale fire tests and numerical studies for this purpose. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed in this study with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the test and FEA results for different wall configurations, steel grades, thicknesses and load ratios. This paper presents the details and results of this study including the improved fire design rules for predicting the load capacity of LSF wall studs and the failure times of LSF walls under standard fire conditions.
Resumo:
Here we unveil a tragic triptych of three Australian women painfully painted onto the walls of interior surfaces. The woman at the centre of the triptych is Florence Broadhurst whose tragic death still remains a mystery. To the right is Australian skin illustrator Emma Hack who recreates Broadhurst’s wallpapers, mimicking their colourful patterns onto live models. Hack perfectly assimilates the models’ body into the wallpaper, camouflaging bodies except for small hints at something more in the foreground. In the process of Hack’s images, the models become statues, standing painfully still holding their breath for minutes at a time. The third woman, to the left of the triptych, is the fictional character Candy from the 2006 Australian film Candy. Candy’s traumatic struggle with addiction ends with her conveying her pain in a poem she writes on the walls of her home; culminating her tragic story into a disturbed domestic wall surface. This research tries to understand this relationship with the surface through tragedy as a reciprocal agreement between surface and subject and not a permanent transference between one state and another. What the surface provides in times of personal struggle and turmoil is a method for us to come to terms with out material existence.
Resumo:
The research investigated women’s participation in the Australian Digital Content Industry, which encompasses both multimedia and games production. The Digital Content Industry is an area of growing economic and social significance, both in Australia and internationally. Women are under-represented in core Digital Content Industry work but there has been little theoretical or empirical investigation of the underlying issues. This research identified a range of influences on women’s participation and provides a better understanding of this complex social phenomenon by proposing that influences should be understood from the perspective of agent-driven mechanisms. The key contribution is a new theory - the Acts of Agency Theory - which was used to discuss the phenomenon and issues underpinning women’s participation and to recommend strategies that should foster greater participation of women in the Digital Content Industry.
Resumo:
Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are measures or ways to improve the energy performance and energy efficiency of buildings. This study surveyed various energy-efficient approaches for commercial building and identifies Envelope Thermal Transfer Value (ETTV) and Green applications (Living wall, Green facade and Green roof) as most important and effective methods. An in-depth investigation was carried out on these energy-efficient approaches. It has been found that no ETTV model has been developed for sub-tropical climate of Australia. Moreover, existing ETTV equations developed for other countries do not take roof heat gain into consideration. Furthermore, the relationship of ETTV and different Green applications have not been investigated extensively in any literature, and the energy performance of commercial buildings in the presence of Living wall, Green facade and Green roof has not been investigated in the sub-tropical climate of Australia. The study has been conducted in two phases. First, the study develops the new formulation, coefficient and bench mark value of ETTV in the presence of external shading devices. In the new formulation, roof heat gain has been included in the integrated heat gain model made of ETTV. In the 2nd stage, the study presents the relationship of thermal and energy performance of (a) Living wall and ETTV (b) Green facade and ETTV (c) Combination of Living wall, Green facade and ETTV (d) Combination of Living wall, Green Roof and ETTV in new formulations. Finally, the study demonstrates the amount of energy that can be saved annually from different combinations of Green applications, i.e., Living wall, Green facade; combination of Living wall and Green facade; combination of Living wall and Green roof. The estimations are supported by experimental values obtained from extensive experiments of Living walls and Green roofs.
Resumo:
Introduction: The use of amorphous-silicon electronic portal imaging devices (a-Si EPIDs) for dosimetry is complicated by the effects of scattered radiation. In photon radiotherapy, primary signal at the detector can be accompanied by photons scattered from linear accelerator components, detector materials, intervening air, treatment room surfaces (floor, walls, etc) and from the patient/phantom being irradiated. Consequently, EPID measurements which presume to take scatter into account are highly sensitive to the identification of these contributions. One example of this susceptibility is the process of calibrating an EPID for use as a gauge of (radiological) thickness, where specific allowance must be made for the effect of phantom-scatter on the intensity of radiation measured through different thicknesses of phantom. This is usually done via a theoretical calculation which assumes that phantom scatter is linearly related to thickness and field-size. We have, however, undertaken a more detailed study of the scattering effects of fields of different dimensions when applied to phantoms of various thicknesses in order to derive scattered-primary ratios (SPRs) directly from simulation results. This allows us to make a more-accurate calibration of the EPID, and to qualify the appositeness of the theoretical SPR calculations. Methods: This study uses a full MC model of the entire linac-phantom-detector system simulated using EGSnrc/BEAMnrc codes. The Elekta linac and EPID are modelled according to specifications from the manufacturer and the intervening phantoms are modelled as rectilinear blocks of water or plastic, with their densities set to a range of physically realistic and unrealistic values. Transmissions through these various phantoms are calculated using the dose detected in the model EPID and used in an evaluation of the field-size-dependence of SPR, in different media, applying a method suggested for experimental systems by Swindell and Evans [1]. These results are compared firstly with SPRs calculated using the theoretical, linear relationship between SPR and irradiated volume, and secondly with SPRs evaluated from our own experimental data. An alternate evaluation of the SPR in each simulated system is also made by modifying the BEAMnrc user code READPHSP, to identify and count those particles in a given plane of the system that have undergone a scattering event. In addition to these simulations, which are designed to closely replicate the experimental setup, we also used MC models to examine the effects of varying the setup in experimentally challenging ways (changing the size of the air gap between the phantom and the EPID, changing the longitudinal position of the EPID itself). Experimental measurements used in this study were made using an Elekta Precise linear accelerator, operating at 6MV, with an Elekta iView GT a-Si EPID. Results and Discussion: 1. Comparison with theory: With the Elekta iView EPID fixed at 160 cm from the photon source, the phantoms, when positioned isocentrically, are located 41 to 55 cm from the surface of the panel. At this geometry, a close but imperfect agreement (differing by up to 5%) can be identified between the results of the simulations and the theoretical calculations. However, this agreement can be totally disrupted by shifting the phantom out of the isocentric position. Evidently, the allowance made for source-phantom-detector geometry by the theoretical expression for SPR is inadequate to describe the effect that phantom proximity can have on measurements made using an (infamously low-energy sensitive) a-Si EPID. 2. Comparison with experiment: For various square field sizes and across the range of phantom thicknesses, there is good agreement between simulation data and experimental measurements of the transmissions and the derived values of the primary intensities. However, the values of SPR obtained through these simulations and measurements seem to be much more sensitive to slight differences between the simulated and real systems, leading to difficulties in producing a simulated system which adequately replicates the experimental data. (For instance, small changes to simulated phantom density make large differences to resulting SPR.) 3. Comparison with direct calculation: By developing a method for directly counting the number scattered particles reaching the detector after passing through the various isocentric phantom thicknesses, we show that the experimental method discussed above is providing a good measure of the actual degree of scattering produced by the phantom. This calculation also permits the analysis of the scattering sources/sinks within the linac and EPID, as well as the phantom and intervening air. Conclusions: This work challenges the assumption that scatter to and within an EPID can be accounted for using a simple, linear model. Simulations discussed here are intended to contribute to a fuller understanding of the contribution of scattered radiation to the EPID images that are used in dosimetry calculations. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital, Brisbane, Australia. The authors are also grateful to Elekta for the provision of manufacturing specifications which permitted the detailed simulation of their linear accelerators and amorphous-silicon electronic portal imaging devices. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.
Resumo:
Critical literacy (CL) has been the subject of much debate in the Australian public and education arenas since 2002. Recently, this debate has dissipated as literacy education agendas and attendant policies shift to embrace more hybrid models and approaches to the teaching of senior English. This paper/presentation reports on the views expressed by four teachers of senior English about critical literacy and it’s relevance to students who are from culturally and linguistically diverse backgrounds who are learning English while undertaking senior studies in high school. Teachers’ understandings of critical literacy are important, esp. given the emphasis on Critical and Creative Thinking and Literacy as two of the General Capabilities underpinning the Australian national curriculum. Using critical discourse analysis, data from four specialist ESL teachers in two different schools were analysed for the ways in which these teachers construct critical literacy. While all four teachers indicated significant commitment to critical literacy as an approach to English language teaching, the understandings they articulated varied from providing forms of access to powerful genres, to rationalist approaches to interrogating text, to a type of ‘critical-aesthetic’ analysis of text construction. Implications are also discussed.
Resumo:
Young male drivers are over-represented in road-related fatalities. Speeding represents a pervasive and significant contributor to road trauma. Anti-speeding messages represent a long-standing strategy aimed at discouraging drivers from speeding. These messages, however, have not always achieved their persuasive objectives which may be due, in part, to them not always targeting the most salient beliefs underpinning the speeding behavior of particular driver groups. The current study elicited key beliefs underpinning speeding behavior as well as strategies used to avoid speeding, using a well-validated belief-based model, the Theory of Planned Behavior and in-depth qualitative methods. To obtain the most comprehensive understanding about the salient beliefs and strategies of young male drivers, how such beliefs and strategies compared with those of drivers of varying ages and gender, was also explored. Overall, 75 males and females (aged 17-25 or 30-55 years) participated in group discussions. The findings revealed beliefs that were particularly relevant to young males and that would likely represent key foci for developing message content. For instance, the need to feel in control and the desire to experience positive affect when driving were salient advantages; while infringements were a salient disadvantage and, in particular, the loss of points and the implications associated with potential licence loss as opposed to the monetary (fine) loss (behavioral beliefs). For normative influences, young males appeared to hold notable misperceptions (compared with other drivers, such as young females); for instance, young males believed that females/girlfriends were impressed by their speeding. In the case of control beliefs, the findings revealed low perceptions of control with respect to being able to not speed and a belief that something “extraordinary” would need to happen for a young male driver to lose control of their vehicle while speeding. The practical implications of the findings, in terms of providing suggestions for devising the content of anti-speeding messages, are discussed.
Resumo:
Purpose – The purpose of this paper is to look at auditor obligations to their clients and potentially to third parties such as investors, with a focus on the quality of financial disclosure in an evolving legal framework. Design/methodology/approach – The article outlines and compares established and emerging trends relative to information disclosure and contractual performance in parallel contexts where information asymmetry exists. In particular, this article considers the disclosure regime that has evolved in the insurance industry to address the substantial imbalance in the level of knowledge possessed by the insured in comparison to the prospective insurer. Abductive reasoning is used to identify causal constructs that explain the data pattern from which the theorised potential for judicial revision of the interpretation of “true and fair” in line with “good faith” in legal regulation is derived. Findings – The authors conclude that there is little doubt that a duty of good faith in relation to auditor-company contractual dealings and potentially a broader good faith duty to third parties such as investors in companies may be on the horizon. Originality/value – In the context of stated objectives by organisations such as the International Federation of Accountants to reconcile ethical and technical skills in the wake of the global financial crisis, there is an increased need to rebuild public and investor confidence in the underpinning integrity of financial reporting. This paper offers a perspective on one way to achieve this by recognising the similarities in the information asymmetry relationships in the insurance industry and how the notion of “good faith” in that relationship could be useful in the audit situation.
Resumo:
In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.
Resumo:
Queensland University of Technology (QUT) Library offers a range of resources and services to researchers as part of their research support portfolio. This poster will present key features of two of the data management services offered by research support staff at QUT Library. The first service is QUT Research Data Finder (RDF), a product of the Australian National Data Service (ANDS) funded Metadata Stores project. RDF is a data registry (metadata repository) that aims to publicise datasets that are research outputs arising from completed QUT research projects. The second is a software and code registry, which is currently under development with the sole purpose of improving discovery of source code and software as QUT research outputs. RESEARCH DATA FINDER As an integrated metadata repository, Research Data Finder aligns with institutional sources of truth, such as QUT’s research administration system, ResearchMaster, as well as QUT’s Academic Profiles system to provide high quality data descriptions that increase awareness of, and access to, shareable research data. The repository and its workflows are designed to foster better data management practices, enhance opportunities for collaboration and research, promote cross-disciplinary research and maximise the impact of existing research data sets. SOFTWARE AND CODE REGISTRY The QUT Library software and code registry project stems from concerns amongst researchers with regards to development activities, storage, accessibility, discoverability and impact, sharing, copyright and IP ownership of software and code. As a result, the Library is developing a registry for code and software research outputs, which will use existing Research Data Finder architecture. The underpinning software for both registries is VIVO, open source software developed by Cornell University. The registry will use the Research Data Finder service instance of VIVO and will include a searchable interface, links to code/software locations and metadata feeds to Research Data Australia. Key benefits of the project include:improving the discoverability and reuse of QUT researchers’ code and software amongst QUT and the QUT research community; increasing the profile of QUT research outputs on a national level by providing a metadata feed to Research Data Australia, and; improving the metrics for access and reuse of code and software in the repository.
Resumo:
Members of the insulin-like growth factor (IGF) family have been shown to play critical roles in normal growth and development, as well as in tumour biology. The IGF system is complex and the biological effects of the IGFs are determined by their diverse interactions between many molecules, including their interactions with extracellular matrix (ECM) proteins. Recent studies have demonstrated that IGFs associate with the ECM protein vitronectin (VN) through IGF-binding proteins (IGFBP) and that this interaction modulates IGF-stimulated biological functions, namely cell migration and cell survival through the cooperative involvement of the type-I IGF receptor (IGF-1R) and VN-binding integrins. Since IGFs play important roles in the transformation and progression of breast cancer and VN has been found to be over-expressed at the leading edge of breast tumours, this project aimed to describe the effects of IGF-I:VN interactions on breast cell function. This was undertaken to dissect the molecular mechanisms underlying IGF-I:VN-induced responses and to design inhibitors to block the effects of such interactions. The studies described herein demonstrate that the increase in migration of MCF-7 breast cancer cells in response to the IGF-I:IGFBP-5:VN complex is accompanied by differential expression of genes known to be involved in migration, invasion and/or survival, including Tissue-factor (TF), Stratifin (SFN), Ephrin-B2, Sharp-2 and PAI-1. This „migration gene signature‟ was confirmed using real-time PCR analysis. Substitution of the native IGF-I within the IGF-I:IGFBP:VN complex with the IGF-I analogue, \[L24]\[A31]-IGF-I, which has a reduced affinity for the IGF-1R, failed to stimulate cell migration and interestingly, also failed to induce the differential gene expression. This supports the involvement of the IGF-1R in mediating these changes in gene expression. Furthermore, lentiviral shRNA-mediated stable knockdown of TF and SFN completely abrogated the increased cell migration induced by IGF-I:IGFBP:VN complexes in MCF-7 cells. Indeed, when these cells were grown in 3D Matrigel™ cultures a decrease in the overall size of the 3D spheroids in response to the IGF-I:IGFBP:VN complexes was observed compared to the parental MCF-7 cells. This suggests that TF and SFN have a role in complex-stimulated cell survival. Moreover, signalling studies performed on cells with the reduced expression of either TF or SFN had a decreased IGF-1R activation, suggesting the involvement of signalling pathways downstream of IGF-1R in TF- and/or SFN-mediated cell migration and cell survival. Taken together, these studies provide evidence for a common mechanism activated downstream of the IGF-1R that induces the expression of the „migration gene signature‟ in response to the IGF-I:IGFBP:VN complex that confers breast cancer cells the propensity to migrate and survive. Given the functional significance of the interdependence of ECM and growth factor (GF) interactions in stimulating processes key to breast cancer progression, this project aimed at developing strategies to prevent such growth factor:ECM interactions in an effort to inhibit the downstream functional effects. This may result in the reduction in the levels of ECM-bound IGF-I present in close proximity to the cells, thereby leading to a reduction in the stimulation of IGF-1R present on the cell surface. Indeed, the inhibition of IGF-I-mediated effects through the disruption of its association with ECM would not alter the physiological levels of IGF-I and potentially only exert effects in situations where abnormal over expression of ECM proteins are found; namely carcinomas and hyperproliferative diseases. In summary, this PhD project has identified novel, innovative and realistic strategies that can be used in vitro to inhibit the functions exerted by the IGF-I:IGFBP:VN multiprotein complexes critical for cancer progression, with a potential to be translated into in vivo investigations. Furthermore, TF and SFN were found to mediate IGF-I:IGFBP:VN-induced effects, thereby revealing their potential to be used as therapeutic targets or as predictive biomarkers for the efficacy of IGF-1R targeting therapies in breast cancer patients. In addition to its therapeutic and clinical scope, this PhD project has significantly contributed to the understanding of the role of the IGF system in breast tumour biology by providing valuable new information on the mechanistic events underpinning IGF-I:VN-mediated effects on breast cell functions. Furthermore, this is the first instance where favourable binding sites for IGF-II, IGFBP-3 and IGFBP-5 on VN have been identified. Taken together, this study has functionally characterised the interactions between IGF-I and VN and through innovative strategies has provided a platform for the development of novel therapies targeting these interactions and their downstream effects.
Resumo:
Background Nursing perspectives play an important role in addressing the health priorities of today’s society. The Australian College of Nursing (ACN) acknowledges the significant contribution that nursing research has made since the first nurse researcher, Florence Nightingale, documented the factors that affected the morbidity and mortality of soldiers wounded in the Crimean war in the 1800s. The nursing profession continues to celebrate the significant contribution nursing research made to improving nursing practice and health outcomes. These significant contributions over recent years include, but are not limited to: 1. Health services research that has demonstrated the importance of nursing services and how such services are designed/organised to ensure safety and quality of care (Duffield, et al., 2011; Fernandez, et al., 2012; Middleton, et al., 2011); 2. Clinical research that has demonstrated the value of specific nursing interventions to improved health outcomes, including enhanced survival, reduced morbidity, and improved quality of life and consumer engagement (Cancer Australia and Cancer Voices Australia, 2011; Kitson, et al., 2013; Middleton, et al., 2012; Rickard, et al., 2012; Zeitz, et al., 2011); 3. Basic science research that has advanced discoveries in terms of understanding the biological mechanisms underpinning nursing interventions (Illi, et al., 2012; Kim, et al., 2012; Miaskowski, et al., 2010; Simonova, et al., 2012); 4. Epidemiological research that has advanced understanding about how individuals and populations respond to health problems (Carrington, et al., 2012); 5. Qualitative research that has advanced understanding about experiences of and responses to health and illness and the processes of care that are important to optimal outcomes (Schulman-Green, et al., 2012; Scott, et al., 2011).
Resumo:
CubIT is a multi-user, large-scale presentation and collaboration framework installed at the Queensland University of Technology’s (QUT) Cube facility, an interactive facility made up 48 multi-touch screens and very large projected display screens. The CubIT system allows users to upload, interact with and share their own content on the Cube’s display surfaces. This paper outlines the collaborative features of CubIT which are implemented via three user interfaces, a large-screen multi-touch interface, a mobile phone and tablet application and a web-based content management system. Each of these applications plays a different role and supports different interaction mechanisms supporting a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system.
Resumo:
Generating nano-sized materials of a controlled size and chemical composition is essential for the manufacturing of materials with enhanced properties on an industrial scale, as well as for research purposes, such as toxicological studies. Among the generation methods for airborne nanoparticles (also known as aerosolisation methods), liquid-phase techniques have been widely applied due to the simplicity of their use and their high particle production rate. The use of a collison nebulizer is one such technique, in which the atomisation takes place as a result of the liquid being sucked into the air stream and injected toward the inner walls of the nebulizer reservoir via nozzles, before the solution is dispersed. Despite the above-mentioned benefits, this method also falls victim to various sources of impurities (Knight and Petrucci 2003; W. LaFranchi, Knight et al. 2003). Since these impurities can affect the characterization of the generated nanoparticles, it is crucial to understand and minimize their effect.