937 resultados para Symmetric Design
Resumo:
Throughout history, developments in medicine have aimed to improve patient quality of life, and reduce the trauma associated with surgical treatment. Surgical access to internal organs and bodily structures has been traditionally via large incisions. Endoscopic surgery presents a technique for surgical access via small (1 Omm) incisions by utilising a scope and camera for visualisation of the operative site. Endoscopy presents enormous benefits for patients in terms of lower post operative discomfort, and reduced recovery and hospitalisation time. Since the first gall bladder extraction operation was performed in France in 1987, endoscopic surgery has been embraced by the international medical community. With the adoption of the new technique, new problems never previously encountered in open surgery, were revealed. One such problem is that the removal of large tissue specimens and organs is restricted by the small incision size. Instruments have been developed to address this problem however none of the devices provide a totally satisfactory solution. They have a number of critical weaknesses: -The size of the access incision has to be enlarged, thereby compromising the entire endoscopic approach to surgery. - The physical quality of the specimen extracted is very poor and is not suitable to conduct the necessary post operative pathological examinations. -The safety of both the patient and the physician is jeopardised. The problem of tissue and organ extraction at endoscopy is investigated and addressed. In addition to background information covering endoscopic surgery, this thesis describes the entire approach to the design problem, and the steps taken before arriving at the final solution. This thesis contributes to the body of knowledge associated with the development of endoscopic surgical instruments. A new product capable of extracting large tissue specimens and organs in endoscopy is the final outcome of the research.
Resumo:
Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.
Resumo:
OneSteel Australian Tube Mills has recently developed a new hollow flange channel cold-formed section, known as the LiteSteel Beam (LSB). The innovative LSB sections have the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in residential, industrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research studies have been undertaken on the flexural behaviour of LSBs. However, no research has been undertaken on the shear behaviour of LSBs. Therefore this thesis investigated the ultimate shear strength behaviour of LSBs with and without web openings including their elastic buckling and post-buckling characteristics using both experimental and finite element analyses, and developed accurate shear design rules. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the web and flange elements. Therefore finite element analyses were conducted first to investigate the elastic shear buckling behaviour of LSBs to determine the true support condition at the junction between their web and flange elements. An equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations in the cold-formed steel structures code, AS/NZS 4600. Predicted shear capacities from the modified equations and the available experimental results demonstrated the improvements to the shear capacities of LSBs due to the presence of higher level of fixity at the LSB flange to web juncture. A detailed study into the shear flow distribution of LSB was also undertaken prior to the elastic buckling analysis study. The experimental study of ten LSB sections included 42 shear tests of LSBs with aspect ratios of 1.0 and 1.5 that were loaded at midspan until failure. Both single and back to back LSB arrangements were used. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Experimental results showed that the current cold-formed steel design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Experimental results were presented and compared with corresponding predictions from the current design rules. Appropriate improvements have been proposed for the shear strength of LSBs based on AISI (2007) design equations and test results. Suitable design rules were also developed under the direct strength method (DSM) format. This thesis also includes the shear test results of cold-formed lipped channel beams from LaBoube and Yu (1978a), and the new design rules developed based on them using the same approach used with LSBs. Finite element models of LSBs in shear were also developed to investigate the ultimate shear strength behaviour of LSBs including their elastic and post-buckling characteristics. They were validated by comparing their results with experimental test results. Details of the finite element models of LSBs, the nonlinear analysis results and their comparisons with experimental results are presented in this thesis. Finite element analysis results showed that the current cold-formed steel design rules are very conservative for the shear design of LSBs. They also confirmed other experimental findings relating to elastic and post-buckling shear strength of LSBs. A detailed parametric study based on validated experimental finite element model was undertaken to develop an extensive shear strength data base and was then used to confirm the accuracy of the new shear strength equations proposed in this thesis. Experimental and numerical studies were also undertaken to investigate the shear behaviour of LSBs with web openings. Twenty six shear tests were first undertaken using a three point loading arrangement. It was found that AS/NZS 4600 and Shan et al.'s (1997) design equations are conservative for the shear design of LSBs with web openings while McMahon et al.'s (2008) design equation are unconservative. Experimental finite element models of LSBs with web openings were then developed and validated by comparing their results with experimental test results. The developed nonlinear finite element model was found to predict the shear capacity of LSBs with web opening with very good accuracy. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and FEA parametric study results. This thesis presents the details of experimental and numerical studies of the shear behaviour and strength of LSBs with and without web openings and the results including the developed accurate design rules.
Resumo:
LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a combined cold-forming and electric resistance welding process. OneSteel Australian Tube Mills is promoting the use of LSBs as flexural members in a range of applications, such as floor bearers. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity and thus extend their applications further. However, the structural behaviour of built-up beams is not well understood. Many steel design codes include guidelines for connecting two channels to form a built-up I-section including the required longitudinal spacing of connections. But these rules were found to be inadequate in some applications. Currently the safe spans of builtup beams are determined based on twice the moment capacity of a single section. Research has shown that these guidelines are conservative. Therefore large scale lateral buckling tests and advanced numerical analyses were undertaken to investigate the flexural behaviour of back to back LSBs connected by fasteners (bolts) at various longitudinal spacings under uniform moment conditions. In this research an experimental investigation was first undertaken to study the flexural behaviour of back to back LSBs including its buckling characteristics. This experimental study included tensile coupon tests, initial geometric imperfection measurements and lateral buckling tests. The initial geometric imperfection measurements taken on several back to back LSB specimens showed that the back to back bolting process is not likely to alter the imperfections, and the measured imperfections are well below the fabrication tolerance limits. Twelve large scale lateral buckling tests were conducted to investigate the behaviour of back to back built-up LSBs with various longitudinal fastener spacings under uniform moment conditions. Tests also included two single LSB specimens. Test results showed that the back to back LSBs gave higher moment capacities in comparison with single LSBs, and the fastener spacing influenced the ultimate moment capacities. As the fastener spacing was reduced the ultimate moment capacities of back to back LSBs increased. Finite element models of back to back LSBs with varying fastener spacings were then developed to conduct a detailed parametric study on the flexural behaviour of back to back built-up LSBs. Two finite element models were developed, namely experimental and ideal finite element models. The models included the complex contact behaviour between LSB web elements and intermittently fastened bolted connections along the web elements. They were validated by comparing their results with experimental results and numerical results obtained from an established buckling analysis program called THIN-WALL. These comparisons showed that the developed models could accurately predict both the elastic lateral distortional buckling moments and the non-linear ultimate moment capacities of back to back LSBs. Therefore the ideal finite element models incorporating ideal simply supported boundary conditions and uniform moment conditions were used in a detailed parametric study on the flexural behaviour of back to back LSB members. In the detailed parametric study, both elastic buckling and nonlinear analyses of back to back LSBs were conducted for 13 LSB sections with varying spans and fastener spacings. Finite element analysis results confirmed that the current design rules in AS/NZS 4600 (SA, 2005) are very conservative while the new design rules developed by Anapayan and Mahendran (2009a) for single LSB members were also found to be conservative. Thus new member capacity design rules were developed for back to back LSB members as a function of non-dimensional member slenderness. New empirical equations were also developed to aid in the calculation of elastic lateral distortional buckling moments of intermittently fastened back to back LSBs. Design guidelines were developed for the maximum fastener spacing of back to back LSBs in order to optimise the use of fasteners. A closer fastener spacing of span/6 was recommended for intermediate spans and some long spans where the influence of fastener spacing was found to be high. In the last phase of this research, a detailed investigation was conducted to investigate the potential use of different types of connections and stiffeners in improving the flexural strength of back to back LSB members. It was found that using transverse web stiffeners was the most cost-effective and simple strengthening method. It is recommended that web stiffeners are used at the supports and every third points within the span, and their thickness is in the range of 3 to 5 mm depending on the size of LSB section. The use of web stiffeners eliminated most of the lateral distortional buckling effects and hence improved the ultimate moment capacities. A suitable design equation was developed to calculate the elastic lateral buckling moments of back to back LSBs with the above recommended web stiffener configuration while the same design rules developed for unstiffened back to back LSBs were recommended to calculate the ultimate moment capacities.