275 resultados para River Piranhas-Açu
Resumo:
Compositional data analysis usually deals with relative information between parts where the total (abundances, mass, amount, etc.) is unknown or uninformative. This article addresses the question of what to do when the total is known and is of interest. Tools used in this case are reviewed and analysed, in particular the relationship between the positive orthant of D-dimensional real space, the product space of the real line times the D-part simplex, and their Euclidean space structures. The first alternative corresponds to data analysis taking logarithms on each component, and the second one to treat a log-transformed total jointly with a composition describing the distribution of component amounts. Real data about total abundances of phytoplankton in an Australian river motivated the present study and are used for illustration.
Resumo:
Reverie I is a large-scale public art work commissioned by the Brisbane City Council for permanent installation on the Gardens Point Road Plinth adjacent to QUT Gardens Point campus in Brisbane. The work forms part of the artist's ongoing exploration of the methodology of self-portraiture and amorphous form. In this work, sculpted curls of hair have been assembled according to contours of its constituent cast panels - their capacity to nest with one another determined the final form of the work. The resulting mass of curls resembles both an oversized wig, a withered mulberry and a leaden cloud to invoke notions of movement, reflection and temporality. From the didactic panel: "The curls of Reverie I are derived from 18th century sculptural portraiture. The twisting forms of the highly styled wig known as a periwig were abstracted and inventive, while also bestowing an air of intellectual authority. Curls also evoke two aspects of this particular site: the erratic movement of water associated with the complex tidal movements of Brisbane River, and a state of mental reflection relevant to both the nearby university grounds (where intellectual work takes place) and the riverside pathway (a site for daydreaming)."
Resumo:
This paper presents a novel RTK-based GNSS Lagrangian drifter system that is capable of monitoring water velocity, turbulence and dispersion coefficients of river and estuarine. The Lagrangian drifters use the dual-frequency real time kinematic (RTK) technique for both position and velocity estimations. The capsule is designed to meet the requirements such as minimizing height, diameter, minimizing the direct wind drag, positive buoyancy for satellite signal reception and stability, and waterproof housing for electronic components, such as GNSS receiver and computing board. The collected GNSS data are processed with post-processing RTK software. Several experiments have been carried out in two rivers in Brisbane and Sunshine Coast in Queensland. Results show that the high accuracy GNSS-drifters can be used to measure dispersion coefficient resulting from sub-tidal velocity fluctuations in shallow tidal water. In addition, the RTK-GNSS drifters respond well to vertical motion and thus could be applicable to flood monitoring.
Resumo:
Water quality data are often collected at different sites over time to improve water quality management. Water quality data usually exhibit the following characteristics: non-normal distribution, presence of outliers, missing values, values below detection limits (censored), and serial dependence. It is essential to apply appropriate statistical methodology when analyzing water quality data to draw valid conclusions and hence provide useful advice in water management. In this chapter, we will provide and demonstrate various statistical tools for analyzing such water quality data, and will also introduce how to use a statistical software R to analyze water quality data by various statistical methods. A dataset collected from the Susquehanna River Basin will be used to demonstrate various statistical methods provided in this chapter. The dataset can be downloaded from website http://www.srbc.net/programs/CBP/nutrientprogram.htm.
Resumo:
This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.