379 resultados para Reactive power support
Resumo:
Indigenous Australians have lower levels of health than mainstream Australians and (as far as statistics are able to indicate) higher levels of disability, yet there is little information on Indigenous social and cultural constructions of disability or the Indigenous experience of disability. This research seeks to address these gaps by using an ethnographic approach, couched within a critical medical anthropology (CMA) framework and using the “three bodies” approach, to study the lived experience of urban Indigenous people with an adult-onset disability. The research approach takes account of the debate about the legitimacy of research into Indigenous Australians, Foucault‟s governmentality, and the arguments for different models of disability. The possibility of a cultural model of disability is raised. After a series of initial interviews with contacts who were primarily service providers, more detailed ethnographic research was conducted with three Indigenous women in their homes and with four groups of Indigenous women and men at an Indigenous respite centre. The research involved multiple visits over a period extending more than two years, and the establishment of relationships with all participants. An iterative inductive approach utilising constant comparison (i.e. a form of grounded theory) was adopted, enabling the generation and testing of working hypotheses. The findings point to the lack of an Indigenous construct of disability, related to the holistic construction of health among Indigenous Australians. Shame emerges as a factor which affects the way that Indigenous Australians respond to disability, and which operates in apparent contradiction to expectations of community support. Aspects of shame relate to governmentality, suggesting that self-disciplinary mechanisms have been taken up and support the more obvious exertion of government power. A key finding is the strength of Indigenous identity above and beyond other forms of identification, e.g. as a person with a disability, expressed in forms of resistance by individuals and service providers to the categories and procedures of the mainstream. The implications of a holistic construction of health are discussed in relation to the use of CMA, the interpretation of the “three bodies”, governmentality and resistance. The explanatory value of the concept of sympatricity is discussed, as is the potential value of a cultural model of disability which takes into account the cultural politics of a defiant Indigenous identity.
Resumo:
Whistleblowing has often been regarded as an intrusion into the commercial functioning of organisations, and whistle-blowers have frequently found their career prospects to go into steep decline. Recent evidence, however, suggests that individuals in organisations are increasingly being encouraged to report wrongdoings, with whistle-blowing being highlighted as an effective method of reducing the costs of fraudulent activities. This single organisation case study finds that many employees are still reluctant to report wrongdoings in their workplace. This is particularly the case in respect of male employees. It is also found that those employees who do whistle-blow are motivated by feelings of loyalty towards their organisation, rather than by self-interest.
Resumo:
An Asset Management (AM) life-cycle constitutes a set of processes that align with the development, operation and maintenance of assets, in order to meet the desired requirements and objectives of the stake holders of the business. The scope of AM is often broad within an organization due to the interactions between its internal elements such as human resources, finance, technology, engineering operation, information technology and management, as well as external elements such as governance and environment. Due to the complexity of the AM processes, it has been proposed that in order to optimize asset management activities, process modelling initiatives should be adopted. Although organisations adopt AM principles and carry out AM initiatives, most do not document or model their AM processes, let alone enacting their processes (semi-) automatically using a computer-supported system. There is currently a lack of knowledge describing how to model AM processes through a methodical and suitable manner so that the processes are streamlines and optimized and are ready for deployment in a computerised way. This research aims to overcome this deficiency by developing an approach that will aid organisations in constructing AM process models quickly and systematically whilst using the most appropriate techniques, such as workflow technology. Currently, there is a wealth of information within the individual domains of AM and workflow. Both fields are gaining significant popularity in many industries thus fuelling the need for research in exploring the possible benefits of their cross-disciplinary applications. This research is thus inspired to investigate these two domains to exploit the application of workflow to modelling and execution of AM processes. Specifically, it will investigate appropriate methodologies in applying workflow techniques to AM frameworks. One of the benefits of applying workflow models to AM processes is to adapt and enable both ad-hoc and evolutionary changes over time. In addition, this can automate an AM process as well as to support the coordination and collaboration of people that are involved in carrying out the process. A workflow management system (WFMS) can be used to support the design and enactment (i.e. execution) of processes and cope with changes that occur to the process during the enactment. So far few literatures can be found in documenting a systematic approach to modelling the characteristics of AM processes. In order to obtain a workflow model for AM processes commonalities and differences between different AM processes need to be identified. This is the fundamental step in developing a conscientious workflow model for AM processes. Therefore, the first stage of this research focuses on identifying the characteristics of AM processes, especially AM decision making processes. The second stage is to review a number of contemporary workflow techniques and choose a suitable technique for application to AM decision making processes. The third stage is to develop an intermediate ameliorated AM decision process definition that improves the current process description and is ready for modelling using the workflow language selected in the previous stage. All these lead to the fourth stage where a workflow model for an AM decision making process is developed. The process model is then deployed (semi-) automatically in a state-of-the-art WFMS demonstrating the benefits of applying workflow technology to the domain of AM. Given that the information in the AM decision making process is captured at an abstract level within the scope of this work, the deployed process model can be used as an executable guideline for carrying out an AM decision process in practice. Moreover, it can be used as a vanilla system that, once being incorporated with rich information from a specific AM decision making process (e.g. in the case of a building construction or a power plant maintenance), is able to support the automation of such a process in a more elaborated way.
Resumo:
Interactional research on advice giving has described advice as normative and asymmetric. In this paper we examine how these dimensions of advice are softened by counselors on a helpline for children and young people through the use of questions. Through what we term ‘‘adviceimplicative interrogatives,’’ counselors ask clients about the relevance or applicability of a possible future course of action. The allusion to this possible action by the counselor identifies it as normatively relevant, and displays the counselor’s epistemic authority in relation to dealing with a client’s problems. However, the interrogative format mitigates the normative and asymmetric dimensions typical of advice sequences by orienting to the client’s epistemic authority in relation to their own lives, and delivering advice in a way that is contingent upon the client’s accounts of their experiences, capacities, and understandings. The demonstration of the use of questions in advice sequences offers an interactional specification of the ‘‘client-centered’’ support that is characteristic of prevailing counseling practice. More specifically, it shows how the values of empowerment and child-centered practice, which underpin services such as Kids Helpline, are embodied in specific interactional devices. Detailed descriptions of this interactional practice offer fresh insights into the use of interrogatives in counseling contexts, and provide practitioners with new ways of thinking about, and discussing, their current practices.
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.