309 resultados para Order-parameter
Straightforward biodegradable nanoparticle generation through megahertz-order ultrasonic atomization
Resumo:
Simple and reliable formation of biodegradable nanoparticles formed from poly-ε-caprolactone was achieved using 1.645 MHz piston atomization of a source fluid of 0.5% w/v of the polymer dissolved in acetone; the particles were allowed to descend under gravity in air 8 cm into a 1 mM solution of sodium dodecyl sulfate. After centrifugation to remove surface agglomerations, a symmetric monodisperse distribution of particles φ 186 nm (SD=5.7, n=6) was obtained with a yield of 65.2%. © 2006 American Institute of Physics.
Resumo:
This book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems.
Resumo:
We aim to design strategies for sequential decision making that adjust to the difficulty of the learning problem. We study this question both in the setting of prediction with expert advice, and for more general combinatorial decision tasks. We are not satisfied with just guaranteeing minimax regret rates, but we want our algorithms to perform significantly better on easy data. Two popular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The underlying notions of 'easy data', which may be paraphrased as "the learning problem has small variance" and "multiple decisions are useful", are synergetic. But even though there are sophisticated algorithms that exploit one of the two, no existing algorithm is able to adapt to both. In this paper we outline a new method for obtaining such adaptive algorithms, based on a potential function that aggregates a range of learning rates (which are essential tuning parameters). By choosing the right prior we construct efficient algorithms and show that they reap both benefits by proving the first bounds that are both second-order and incorporate quantiles.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
This article aims to fill in the gap of the second-order accurate schemes for the time-fractional subdiffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional subdiffusion equation with space discretized by finite element and time discretized by the fractional linear multistep methods. These two methods are unconditionally stable with maximum global convergence order of $O(\tau+h^{r+1})$ in the $L^2$ norm, where $\tau$ and $h$ are the step sizes in time and space, respectively, and $r$ is the degree of the piecewise polynomial space. The average convergence rates for the two methods in time are also investigated, which shows that the average convergence rates of the two methods are $O(\tau^{1.5}+h^{r+1})$. Furthermore, two improved algorithms are constrcted, they are also unconditionally stable and convergent of order $O(\tau^2+h^{r+1})$. Numerical examples are provided to verify the theoretical analysis. The comparisons between the present algorithms and the existing ones are included, which show that our numerical algorithms exhibit better performances than the known ones.
Resumo:
In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.
Resumo:
Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
The fractional Fokker-Planck equation is an important physical model for simulating anomalous diffusions with external forces. Because of the non-local property of the fractional derivative an interesting problem is to explore high accuracy numerical methods for fractional differential equations. In this paper, a space-time spectral method is presented for the numerical solution of the time fractional Fokker-Planck initial-boundary value problem. The proposed method employs the Jacobi polynomials for the temporal discretization and Fourier-like basis functions for the spatial discretization. Due to the diagonalizable trait of the Fourier-like basis functions, this leads to a reduced representation of the inner product in the Galerkin analysis. We prove that the time fractional Fokker-Planck equation attains the same approximation order as the time fractional diffusion equation developed in [23] by using the present method. That indicates an exponential decay may be achieved if the exact solution is sufficiently smooth. Finally, some numerical results are given to demonstrate the high order accuracy and efficiency of the new numerical scheme. The results show that the errors of the numerical solutions obtained by the space-time spectral method decay exponentially.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
Resumo:
Increasingly, domestic violence is being treated as a child protection issue, and children affected by domestic violence are recognised as experiencing a form of child abuse. Domestic violence protection order legislation – as a key legal response to domestic violence – may offer an important legal option for the protection of children affected by domestic violence. In this article, we consider the research that establishes domestic violence as a form of child abuse, and review the provisions of State and Territory domestic violence protection order legislation to assess whether they demonstrate an adequate focus on the protection of children.
Resumo:
Acid hydrolysis is a popular pretreatment for removing hemicellulose from lignocelluloses in order to produce a digestible substrate for enzymatic saccharification. In this work, a novel model for the dilute acid hydrolysis of hemicellulose within sugarcane bagasse is presented and calibrated against experimental oligomer profiles. The efficacy of mathematical models as hydrolysis yield predictors and as vehicles for investigating the mechanisms of acid hydrolysis is also examined. Experimental xylose, oligomer (degree of polymerisation 2 to 6) and furfural yield profiles were obtained for bagasse under dilute acid hydrolysis conditions at temperatures ranging from 110C to 170C. Population balance kinetics, diffusion and porosity evolution were incorporated into a mathematical model of the acid hydrolysis of sugarcane bagasse. This model was able to produce a good fit to experimental xylose yield data with only three unknown kinetic parameters ka, kb and kd. However, fitting this same model to an expanded data set of oligomeric and furfural yield profiles did not successfully reproduce the experimental results. It was found that a ``hard-to-hydrolyse'' parameter, $\alpha$, was required in the model to ensure reproducibility of the experimental oligomer profiles at 110C, 125C and 140C. The parameters obtained through the fitting exercises at lower temperatures were able to be used to predict the oligomer profiles at 155C and 170C with promising results. The interpretation of kinetic parameters obtained by fitting a model to only a single set of data may be ambiguous. Although these parameters may correctly reproduce the data, they may not be indicative of the actual rate parameters, unless some care has been taken to ensure that the model describes the true mechanisms of acid hydrolysis. It is possible to challenge the robustness of the model by expanding the experimental data set and hence limiting the parameter space for the fitting parameters. The novel combination of ``hard-to-hydrolyse'' and population balance dynamics in the model presented here appears to stand up to such rigorous fitting constraints.
Resumo:
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on the new information-theoretic concept of one-step Kerridge inaccuracy (OKI). Under several regulatory conditions, we establish a convergence result (and some limited strong consistency results) for our proposed online OKI-based parameter estimator. In simulation studies, we illustrate the global convergence behaviour of our proposed estimator and provide a counter-example illustrating the local convergence of other popular HMM parameter estimators.
Resumo:
Pilot and industrial scale dilute acid pretreatment data can be difficult to obtain due to the significant infrastructure investment required. Consequently, models of dilute acid pretreatment by necessity use laboratory scale data to determine kinetic parameters and make predictions about optimal pretreatment conditions at larger scales. In order for these recommendations to be meaningful, the ability of laboratory scale models to predict pilot and industrial scale yields must be investigated. A mathematical model of the dilute acid pretreatment of sugarcane bagasse has previously been developed by the authors. This model was able to successfully reproduce the experimental yields of xylose and short chain xylooligomers obtained at the laboratory scale. In this paper, the ability of the model to reproduce pilot scale yield and composition data is examined. It was found that in general the model over predicted the pilot scale reactor yields by a significant margin. Models that appear very promising at the laboratory scale may have limitations when predicting yields on a pilot or industrial scale. It is difficult to comment whether there are any consistent trends in optimal operating conditions between reactor scale and laboratory scale hydrolysis due to the limited reactor datasets available. Further investigation is needed to determine whether the model has some efficacy when the kinetic parameters are re-evaluated by parameter fitting to reactor scale data, however, this requires the compilation of larger datasets. Alternatively, laboratory scale mathematical models may have enhanced utility for predicting larger scale reactor performance if bulk mass transport and fluid flow considerations are incorporated into the fibre scale equations. This work reinforces the need for appropriate attention to be paid to pilot scale experimental development when moving from laboratory to pilot and industrial scales for new technologies.
Resumo:
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.