440 resultados para Molecular spectra.
Resumo:
Cisplatin is one of the most potent anticancer agents, displaying significant clinical activity against a variety of solid tumours. To date, cisplatin-based combination treatment remains the most effective systemic chemotherapy for non-small cell lung cancer (NSCLC) patients. Unfortunately, the outcome of cisplatin therapy in NSCLC has reached a plateau due to the development of both intrinsic and acquired resistance that have become a major obstacle in the use of cisplatin in the clinical setting. The molecular mechanisms that underlie chemoresistance are largely unknown. Mechanisms of acquired resistance to cisplatin include reduced intracellular accumulation of the drug, enhanced drug inactivation by metallothionine and glutathione, increased repair activity of DNA damage, and altered expression of oncogenes and regulatory proteins. Cisplatin-induced cytotoxicity is mediated through the induction of apoptosis and cell cycle arrest as a result of cisplatin-DNA adduct formation, which in turn, activates multiple signaling pathways and mediators. These include p53, Bcl-2 family, caspases, cyclins, CDKs, MAPK and PI3K/Akt. Increased expression of anti-apoptotic genes and mutations in the intrinsic apoptotic pathway may also contribute to the inability of cells to detect DNA damage or to induce apoptosis. This chapter will provide an insight into the mechanisms involved in cisplatin resistance and a better understanding of the molecular basis of the cellular response to cisplatin-based chemotherapy in lung cancer.
Resumo:
Three cohorts of farmed yellowtail kingfish (Seriola lalandi) from South Australia were examined for Chlamydia-like organisms associated with epitheliocystis. To characterize the bacteria, 38 gill samples were processed for histopathology, electron microscopy, and 16S rRNA amplification, sequencing, and phylogenetic analysis. Microscopically, the presence of membrane-enclosed cysts was observed within the gill lamellae. Also observed was hyperplasia of the epithelial cells with cytoplasmic vacuolization and fusion of the gill lamellae. Transmission electron microscopy revealed morphological features of the reticulate and intermediate bodies typical of members of the order Chlamydiales. A novel 1,393-bp 16S chlamydial rRNA sequence was amplified from gill DNA extracted from fish in all cohorts over a 3-year period that corresponded to the 16S rRNA sequence amplified directly from laser-dissected cysts. This sequence was only 87% similar to the reported "Candidatus Piscichlamydia salmonis" (AY462244) from Atlantic salmon and Arctic charr. Phylogenetic analysis of this sequence against 35 Chlamydia and Chlamydia-like bacteria revealed that this novel bacterium belongs to an undescribed family lineage in the order Chlamydiales. Based on these observations, we propose this bacterium of yellowtail kingfish be known as "Candidatus Parilichlamydia carangidicola" and that the new family be known as "Candidatus Parilichlamydiaceae."
Resumo:
Histological analysis of gill samples taken from individuals of Latris lineata reared in aquaculture in Tasmania, Australia, and those sampled from the wild revealed the presence of epitheliocystis-like basophilic inclusions. Subsequent morphological, in situ hybridization, and molecular analyses were performed to confirm the presence of this disease and discovered a Chlamydia-like organism associated with this condition, and the criteria set by Fredericks and Relman's postulates were used to establish disease causation. Three distinct 16S rRNA genotypes were sequenced from 16 fish, and phylogenetic analyses of the nearly full-length 16S rRNA sequences generated for this bacterial agent indicated that they were nearly identical novel members of the order Chlamydiales. This new taxon formed a well-supported clade with "Candidatus Parilichlamydia carangidicola" from the yellowtail kingfish (Seriola lalandi). On the basis of sequence divergence over the 16S rRNA region relative to all other members of the order Chlamydiales, a new genus and species are proposed here for the Chlamydia-like bacterium from L. lineata, i.e., "Candidatus Similichlamydia latridicola" gen. nov., sp. nov.
Resumo:
Chlamydia pecorum is a significant pathogen of domestic livestock and wildlife. We have developed a C. pecorum-specific multilocus sequence analysis (MLSA) scheme to examine the genetic diversity of and relationships between Australian sheep, cattle, and koala isolates. An MLSA of seven concatenated housekeeping gene fragments was performed using 35 isolates, including 18 livestock isolates (11 Australian sheep, one Australian cow, and six U.S. livestock isolates) and 17 Australian koala isolates. Phylogenetic analyses showed that the koala isolates formed a distinct clade, with limited clustering with C. pecorum isolates from Australian sheep. We identified 11 MLSA sequence types (STs) among Australian C. pecorum isolates, 10 of them novel, with koala and sheep sharing at least one identical ST (designated ST2013Aa). ST23, previously identified in global C. pecorum livestock isolates, was observed here in a subset of Australian bovine and sheep isolates. Most notably, ST23 was found in association with multiple disease states and hosts, providing insights into the transmission of this pathogen between livestock hosts. The complexity of the epidemiology of this disease was further highlighted by the observation that at least two examples of sheep were infected with different C. pecorum STs in the eyes and gastrointestinal tract. We have demonstrated the feasibility of our MLSA scheme for understanding the host relationship that exists between Australian C. pecorum strains and provide the first molecular epidemiological data on infections in Australian livestock hosts.
Resumo:
Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.
Resumo:
RATIONALE Both traditional electron ionization and electrospray ionization tandem mass spectrometry have demonstrated limitations in the unambiguous identification of fatty acids. In the former case, high electron energies lead to extensive dissociation of the radical cations from which little specific structural information can be obtained. In the latter, conventional collision-induced dissociation (CID) of even-electron ions provides little intra-chain fragmentation and thus few structural diagnostics. New approaches that harness the desirable features of both methods, namely radical-driven dissociation with discrete energy deposition, are thus required. METHODS Herein we describe the derivatization of a structurally diverse suite of fatty acids as 4-iodobenzyl esters (FAIBE). Electrospray ionization of these derivatives in the presence of sodium acetate yields abundant [M+Na]+ ions that can be mass-selected and subjected to laser irradiation (=266nm) on a modified linear ion-trap mass spectrometer. RESULTS Photodissociation (PD) of the FAIBE derivatives yields abundant radical cations by loss of atomic iodine and in several cases selective dissociation of activated carboncarbon bonds (e.g., at allylic positions) are also observed. Subsequent CID of the [M+NaI]center dot+ radical cations yields radical-directed dissociation (RDD) mass spectra that reveal extensive carboncarbon bond dissociation without scrambling of molecular information. CONCLUSIONS Both PD and RDD spectra obtained from derivatized fatty acids provide a wealth of structural information including the position(s) of unsaturation, chain-branching and hydroxylation. The structural information obtained by this approach, in particular the ability to rapidly differentiate isomeric lipids, represents a useful addition to the lipidomics tool box. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.
Resumo:
The visual and multidimensional representations like images and graphical structures related to biology provide great insights into understanding the complexities of different organisms. Especially, life scientists use different representations of molecular structures to answer biological questions and to better understand cellular processes. Combining results from two field studies, we explore the role of molecular structures in life scientists’ current work from a humanfactors perspective. Our main conclusion is that different representations of molecular structures, due to their visual nature, are important for supporting collaboration, constructing new knowledge and supporting scientists’ professional activities in general.
Resumo:
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.
Resumo:
Na-dodecylbenzenesulfate (SDBS), a natural anionic surfactant, has been successfully intercalated into a Ca based LDH host structure during tricalcium aluminate hydration in the presence of SDBS aqueous solution (CaAl-SDBS-LDH). The resulting product was characterized by powder X-ray diffraction (XRD), mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique, thermal analysis (TG–DTA) and scan electron microscopy (SEM). The XRD results revealed that the interlayer distance of resultant product was expanded to 30.46 Å. MIR combined with NIR spectra offered an effective method to illustrate this intercalation. The NIR spectra (6000–5500 cm−1) displayed prominent bands to expound SDBS intercalated into hydration product of C3A. And the bands around 8300 cm−1 were assigned to the second overtone of the first fundamental of CH stretching vibrations of SDBS. In addition, thermal analysis showed that the dehydration and dehydroxylation took place at ca. 220 °C and 348 °C, respectively. The SEM results appeared approximately hexagonal platy crystallites morphology for CaAl-SDBS-LDH, with particle size smaller and thinner.
Resumo:
Raman and infrared spectra of two well-defined fluellite samples, Al2(PO4)F2(OH)�7H2O, from the Krásno near Horní Slavkov (Czech Republic) and Kapunda, South Australia (Australia) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, aluminum oxide/hydroxide/fluoride octahedra, water molecules and hydroxyl ions. Approximate O–H���O hydrogen bond lengths were inferred from the Raman and infrared spectra.
Resumo:
Copper doped zinc aluminium ferrites are synthesized by the solid-state reaction route is cubic crystalline with unit cell parameter varying from 8.39 to 8.89 Å. TEM pictures clearly indicating that fundamental unit is composed of octahedral and tetrahedral blocks and joined strongly shown in (a). EPR spectra is compositional dependent at lower Al/Cu concentration EPR spectra is due to Fe3+ and at a higher content of Al/Cu the EPR spectra is due to Cu2+. Absence of EPR spectra at room temperature indicates that the sample is perfectly ferromagnetic. EPR results at low temperature indicate that the sample is paramagnetic, and that copper is placed in the tetragonal elongation (B) site with magnetically non-equivalent ions in the unit cell having strong exchange coupling between them. This is shown in (b). (a) TEM image of ferrite with x = 0.15. (b) EPR spectrum of ferrite with x = 0.75.
Resumo:
Vibrational spectroscopy has been used to study the rare earth mineral churchite of formula (REE)(PO4)-⋅2H2O. The mineral contains a range of rare earth metals including yttrium depending on the locality. The Raman spectra of churchite-(REE) are characterized by an intense sharp band at 984 cm-1 assigned to the v1 (PO¾-) symmetric stretching mode. A lower intensity band observed at around 1067 cm-1 is attributed to the v3 (PO¾-) antisymmetric stretching mode. The (PO¾-) bending modes are observed at 497 cm-1 (v2) and 565 cm-1(v4). Raman bands at 649 and 681 cm-1 are assigned to water librational modes. Vibrational spectroscopy enables aspects of the structure of churchite to be ascertained.