563 resultados para Iterative methods (Mathematics)
Resumo:
Workflow nets, a particular class of Petri nets, have become one of the standard ways to model and analyze workflows. Typically, they are used as an abstraction of the workflow that is used to check the so-called soundness property. This property guarantees the absence of livelocks, deadlocks, and other anomalies that can be detected without domain knowledge. Several authors have proposed alternative notions of soundness and have suggested to use more expressive languages, e.g., models with cancellations or priorities. This paper provides an overview of the different notions of soundness and investigates these in the presence of different extensions of workflow nets.We will show that the eight soundness notions described in the literature are decidable for workflow nets. However, most extensions will make all of these notions undecidable. These new results show the theoretical limits of workflow verification. Moreover, we discuss some of the analysis approaches described in the literature.
Resumo:
Robust, affine covariant, feature extractors provide a means to extract correspondences between images captured by widely separated cameras. Advances in wide baseline correspondence extraction require looking beyond the robust feature extraction and matching approach. This study examines new techniques of extracting correspondences that take advantage of information contained in affine feature matches. Methods of improving the accuracy of a set of putative matches, eliminating incorrect matches and extracting large numbers of additional correspondences are explored. It is assumed that knowledge of the camera geometry is not available and not immediately recoverable. The new techniques are evaluated by means of an epipolar geometry estimation task. It is shown that these methods enable the computation of camera geometry in many cases where existing feature extractors cannot produce sufficient numbers of accurate correspondences.
Resumo:
This chapter examines how a change in school leadership can successfully address competencies in complex situations and thus create a positive learning environment in which Indigenous students can excel in their learning rather than accept a culture that inhibits school improvement. Mathematics has long been an area that has failed to assist Indigenous students in improving their learning outcomes, as it is a Eurocentric subject (Rothbaum, Weisz, Pott, Miyake & Morelli, 2000, De Plevitz, 2007) and does not contextualize pedagogy with Indigenous culture and perspectives (Matthews, Cooper & Baturo, 2007). The chapter explores the work of a team of Indigenous and non-Indigenous academics from the YuMi Deadly Centre who are turning the tide on improving Indigenous mathematical outcomes in schools and in communities with high numbers of Aboriginal and Torres Strait Islander students.
Resumo:
A model for drug diffusion from a spherical polymeric drug delivery device is considered. The model contains two key features. The first is that solvent diffuses into the polymer, which then transitions from a glassy to a rubbery state. The interface between the two states of polymer is modelled as a moving boundary, whose speed is governed by a kinetic law; the same moving boundary problem arises in the one-phase limit of a Stefan problem with kinetic undercooling. The second feature is that drug diffuses only through the rubbery region, with a nonlinear diffusion coefficient that depends on the concentration of solvent. We analyse the model using both formal asymptotics and numerical computation, the latter by applying a front-fixing scheme with a finite volume method. Previous results are extended and comparisons are made with linear models that work well under certain parameter regimes. Finally, a model for a multi-layered drug delivery device is suggested, which allows for more flexible control of drug release.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
Gradient-based approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in value-function methods. In this paper we introduce GPOMDP, a simulation-based algorithm for generating a biased estimate of the gradient of the average reward in Partially Observable Markov Decision Processes (POMDPs) controlled by parameterized stochastic policies. A similar algorithm was proposed by Kimura, Yamamura, and Kobayashi (1995). The algorithm's chief advantages are that it requires storage of only twice the number of policy parameters, uses one free parameter β ∈ [0,1) (which has a natural interpretation in terms of bias-variance trade-off), and requires no knowledge of the underlying state. We prove convergence of GPOMDP, and show how the correct choice of the parameter β is related to the mixing time of the controlled POMDP. We briefly describe extensions of GPOMDP to controlled Markov chains, continuous state, observation and control spaces, multiple-agents, higher-order derivatives, and a version for training stochastic policies with internal states. In a companion paper (Baxter, Bartlett, & Weaver, 2001) we show how the gradient estimates generated by GPOMDP can be used in both a traditional stochastic gradient algorithm and a conjugate-gradient procedure to find local optima of the average reward. ©2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.
Resumo:
One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this phenomenon is related to the distribution of margins of the training examples with respect to the generated voting classification rule, where the margin of an example is simply the difference between the number of correct votes and the maximum number of votes received by any incorrect label. We show that techniques used in the analysis of Vapnik's support vector classifiers and of neural networks with small weights can be applied to voting methods to relate the margin distribution to the test error. We also show theoretically and experimentally that boosting is especially effective at increasing the margins of the training examples. Finally, we compare our explanation to those based on the bias-variance decomposition.
Resumo:
There are many applications in aeronautics where there exist strong couplings between disciplines. One practical example is within the context of Unmanned Aerial Vehicle(UAV) automation where there exists strong coupling between operation constraints, aerodynamics, vehicle dynamics, mission and path planning. UAV path planning can be done either online or offline. The current state of path planning optimisation online UAVs with high performance computation is not at the same level as its ground-based offline optimizer's counterpart, this is mainly due to the volume, power and weight limitations on the UAV; some small UAVs do not have the computational power needed for some optimisation and path planning task. In this paper, we describe an optimisation method which can be applied to Multi-disciplinary Design Optimisation problems and UAV path planning problems. Hardware-based design optimisation techniques are used. The power and physical limitations of UAV, which may not be a problem in PC-based solutions, can be approached by utilizing a Field Programmable Gate Array (FPGA) as an algorithm accelerator. The inevitable latency produced by the iterative process of an Evolutionary Algorithm (EA) is concealed by exploiting the parallelism component within the dataflow paradigm of the EA on an FPGA architecture. Results compare software PC-based solutions and the hardware-based solutions for benchmark mathematical problems as well as a simple real world engineering problem. Results also indicate the practicality of the method which can be used for more complex single and multi objective coupled problems in aeronautical applications.
Resumo:
Binary classification methods can be generalized in many ways to handle multiple classes. It turns out that not all generalizations preserve the nice property of Bayes consistency. We provide a necessary and sufficient condition for consistency which applies to a large class of multiclass classification methods. The approach is illustrated by applying it to some multiclass methods proposed in the literature.
Resumo:
Binary classification is a well studied special case of the classification problem. Statistical properties of binary classifiers, such as consistency, have been investigated in a variety of settings. Binary classification methods can be generalized in many ways to handle multiple classes. It turns out that one can lose consistency in generalizing a binary classification method to deal with multiple classes. We study a rich family of multiclass methods and provide a necessary and sufficient condition for their consistency. We illustrate our approach by applying it to some multiclass methods proposed in the literature.
Resumo:
We study Krylov subspace methods for approximating the matrix-function vector product φ(tA)b where φ(z) = [exp(z) - 1]/z. This product arises in the numerical integration of large stiff systems of differential equations by the Exponential Euler Method, where A is the Jacobian matrix of the system. Recently, this method has found application in the simulation of transport phenomena in porous media within mathematical models of wood drying and groundwater flow. We develop an a posteriori upper bound on the Krylov subspace approximation error and provide a new interpretation of a previously published error estimate. This leads to an alternative Krylov approximation to φ(tA)b, the so-called Harmonic Ritz approximant, which we find does not exhibit oscillatory behaviour of the residual error.