354 resultados para Genetic-evidence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential restriction to effective dispersal and gene flow caused by habitat fragmentation can apply to multiple levels of evolutionary scale; from the fragmentation of ancient supercontinents driving diversification and speciation on disjunct landmasses, to the isolation of proximate populations as a result of their inability to cross intervening unsuitable habitat. Investigating the role of habitat fragmentation in driving diversity within and among taxa can thus include inferences of phylogenetic relationships among taxa, assessments of intraspecific phylogeographic structure and analyses of gene flow among neighbouring populations. The proposed Gondwanan clade within the chironomid (non-biting midge) subfamily Orthocladiinae (Diptera: Chironomidae) represents a model system for investigating the role that population fragmentation and isolation has played at different evolutionary scales. A pilot study by Krosch et al (2009) indentified several highly divergent lineages restricted to ancient rainforest refugia and limited gene flow among proximate sites within a refuge for one member of this clade, Echinocladius martini Cranston. This study provided a framework for investigating the evolutionary history of this taxon and its relatives more thoroughly. Populations of E. martini were sampled in the Paluma bioregion of northeast Queensland to investigate patterns of fine-scale within- and among-stream dispersal and gene flow within a refuge more rigorously. Data was incorporated from Krosch et al (2009) and additional sites were sampled up- and downstream of the original sites. Analyses of genetic structure revealed strong natal site fidelity and high genetic structure among geographically proximate streams. Little evidence was found for regular headwater exchange among upstream sites, but there was distinct evidence for rare adult flight among sites on separate stream reaches. Overall, however, the distribution of shared haplotypes implied that both larval and adult dispersal was largely limited to the natal stream channel. Patterns of regional phylogeographic structure were examined in two related austral orthoclad taxa – Naonella forsythi Boothroyd from New Zealand and Ferringtonia patagonica Sæther and Andersen from southern South America – to provide a comparison with patterns revealed in their close relative E. martini. Both taxa inhabit tectonically active areas of the southern hemisphere that have also experienced several glaciation events throughout the Plio-Pleistocene that are thought to have affected population structure dramatically in many taxa. Four highly divergent lineages estimated to have diverged since the late Miocene were revealed in each taxon, mirroring patterns in E. martini; however, there was no evidence for local geographical endemism, implying substantial range expansion post-diversification. The differences in pattern evident among the three related taxa were suggested to have been influenced by variation in the responses of closed forest habitat to climatic fluctuations during interglacial periods across the three landmasses. Phylogeographic structure in E. martini was resolved at a continental scale by expanding upon the sampling design of Krosch et al (2009) to encompass populations in southeast Queensland, New South Wales and Victoria. Patterns of phylogeographic structure were consistent with expectations and several previously unrecognised lineages were revealed from central- and southern Australia that were geographically endemic to closed forest refugia. Estimated divergence times were congruent with the timing of Plio-Pleistocene rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow of E. martini among isolated refugia was highly restricted and that this taxon was susceptible to the impacts of habitat change. Broader phylogenetic relationships among taxa considered to be members of this Gondwanan orthoclad group were resolved in order to test expected patterns of evolutionary affinities across the austral continents. The inferred phylogeny and estimated divergence times did not accord with expected patterns based on the geological sequence of break-up of the Gondwanan supercontinent and implied instead several transoceanic dispersal events post-vicariance. Difficulties in appropriate taxonomic sampling and accurate calibration of molecular phylogenies notwithstanding, the sampling regime implemented in the current study has been the most intensive yet performed for austral members of the Orthocladiinae and unsurprisingly has revealed both novel taxa and phylogenetic relationships within and among described genera. Several novel associations between life stages are made here for both described and previously unknown taxa. Investigating evolutionary relationships within and among members of this clade of proposed Gondwanan orthoclad taxa has demonstrated that a complex interaction between historical population fragmentation and dispersal at several levels of evolutionary scale has been important in driving diversification in this group. While interruptions to migration, colonisation and gene flow driven by population fragmentation have clearly contributed to the development and maintenance of much of the diversity present in this group, long-distance dispersal has also played a role in influencing diversification of continental biotas and facilitating gene flow among disjunct populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chlamydia pneumoniae is a widespread pathogen causing upper and lower respiratory tract infections in addition to a range of other diseases in humans and animals. Previous whole genome analyses have focused on four essentially clonal (> 99% identity) C. pneumoniae human genomes (AR39, CWL029, J138 and TW183), providing relatively little insight into strain diversity and evolution of this species. Results We performed individual gene-by-gene comparisons of the recently sequenced C. pneumoniae koala genome and four C. pneumoniae human genomes to identify species-specific genes, and more importantly, to gain an insight into the genetic diversity and evolution of the species. We selected genes dispersed throughout the chromosome, representing genes that were specific to C. pneumoniae, genes with a demonstrated role in chlamydial biology and/or pathogenicity (n = 49), genes encoding nucleotide salvage or amino acid biosynthesis proteins (n = 6), and extrachromosomal elements (9 plasmid and 2 bacteriophage genes). Conclusions We have identified strain-specific differences and targets for detection of C. pneumoniae isolates from both human and animal origin. Such characterisation is necessary for an improved understanding of disease transmission and intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Like a set of bookends, cellular, molecular, and genetic changes of the beginnings of life mirror those of one of the most common cause of death—metastatic cancer. Epithelial to mesenchymal transition (EMT) is an important change in cell phenotype which allows the escape of epithelial cells from the structural constraints imposed by tissue architecture, and was first recognized by Elizabeth Hay in the early to mid 1980's to be a central process in early embryonic morphogenesis. Reversals of these changes, termed mesenchymal to epithelial transitions (METs), also occur and are important in tissue construction in normal development. Over the last decade, evidence has mounted for EMT as the means through which solid tissue epithelial cancers invade and metastasize. However, demonstrating this potentially rapid and transient process in vivo has proven difficult and data connecting the relevance of this process to tumor progression is still somewhat limited and controversial. Evidence for an important role of MET in the development of clinically overt metastases is starting to accumulate, and model systems have been developed. This review details recent advances in the knowledge of EMT as it occurs in breast development and carcinoma and prostate cancer progression, and highlights the role that MET plays in cancer metastasis. Finally, perspectives from a clinical and translational viewpoint are discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of either footprints or footwear impressions which have been recovered from a crime scene is a well known and well accepted part of forensic investigation. When this evidence is obtained by investigating officers, comparative analysis to a suspect’s evidence may be undertaken. This can be done either by the detectives or in some cases, podiatrists with experience in forensic analysis. Frequently asked questions of a podiatrist include; “What additional information should be collected from a suspect (for the purposes of comparison), and how should it be collected?” This paper explores the answers to these and related questions based on 20 years of practical experience in the field of crime scene analysis as it relates to podiatry and forensics. Elements of normal and abnormal foot function are explored and used to explain the high degree of variability in wear patterns produced by the interaction of the foot and footwear. Based on this understanding the potential for identifying unique features of the user and correlating this to footwear evidence becomes apparent. Standard protocols adopted by podiatrists allow for more precise, reliable, and valid results to be obtained from their analysis. Complex data sets are now being obtained by investigating officers and, in collaboration with the podiatrist; higher quality conclusions are being achieved. This presentation details the results of investigations which have used standard protocols to collect and analyse footwear and suspects of recent major crimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commentary on : Carey JV. Literature review : should antipyretic therapies routinely be administered to patients with [corrected] fever? J Clin Nurs 2010;19:2377–93.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the identification of common single locus point mutations as risk factors for thrombophilia, many DNA testing methodologies have been described for detecting these variations. Traditionally, functional or immunological testing methods have been used to investigate quantitative anticoagulant deficiencies. However, with the emergence of the genetic variations, factor V Leiden, prothrombin 20210 and, to a lesser extent, the methylene tetrahydrofolate reductase (MTHFR677) and factor V HR2 haplotype, traditional testing methodologies have proved to be less useful and instead DNA technology is more commonly employed in diagnostics. This review considers many of the DNA techniques that have proved to be useful in the detection of common genetic variants that predispose to thrombophilia. Techniques involving gel analysis are used to detect the presence or absence of restriction sites, electrophoretic mobility shifts, as in single strand conformation polymorphism or denaturing gradient gel electrophoresis, and product formation in allele-specific amplification. Such techniques may be sensitive, but are unwielding and often need to be validated objectively. In order to overcome some of the limitations of gel analysis, especially when dealing with larger sample numbers, many alternative detection formats, such as closed tube systems, microplates and microarrays (minisequencing, real-time polymerase chain reaction, and oligonucleotide ligation assays) have been developed. In addition, many of the emerging technologies take advantage of colourimetric or fluorescence detection (including energy transfer) that allows qualitative and quantitative interpretation of results. With the large variety of DNA technologies available, the choice of methodology will depend on several factors including cost and the need for speed, simplicity and robustness. © 2000 Lippincott Williams & Wilkins.