301 resultados para GPS denied environments
Resumo:
In early stages of design and modeling, computers and computer applications are often considered an obstacle, rather than a facilitator of the process. Most notably, brainstorms, process modeling with business experts, or development planning, are often performed by a team in front of a whiteboard. While "whiteboarding" is recognized as an effective tool, low-tech solutions that allow remote participants to contribute are still not generally available. This is a striking observation, considering that vast majority of teams in large organizations are distributed teams. And this has also been one of the key triggers behind the project described in this article, where a team of corporate researchers decided to identify state of the art technologies that could facilitate the scenario mentioned above. This paper is an account of a research project in the area of enterprise collaboration, with a strong focus on the aspects of human computer interaction in mixed mode environments, especially in areas of collaboration where computers still play a secondary role. It is describing a currently running corporate research project. © 2012 Springer-Verlag.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
Resumo:
Companies that perform well are often identified as either possessing creative work environments and (or) having high levels of employee engagement. Creative work environments are largely not well defined, although research alludes to contributing factors. On the other hand employee engagement is defined as the multiple emotional, rational and behavioural dimensions of an employee's consistent level of effort, commitment and connection to their job. Some authors including Saks (2006) and Shuck and Wollard (2010) call for more scholarly research to increase our understanding of the drivers of employee engagement and the actions that organisations can take to improve engagement. There are references made in the literature to the existence of a relationship between a creative work environment and engaged employees (Isaksen & Ekvall 2010), but there is a lack of empirical evidence providing support for the direct relationship between the two. This study aims to explore the relationship, addressing the question of how a creative work environment impacts on employee engagement. Exploratory research to investigate this relationship will use a qualitative methodology with semi-structured interviews, field observations and document analysis. Key themes will be analysed at both the individual and team level reflecting the multi-level nature of the constructs.
Resumo:
This thesis examines the extent of which economic instruments can be used to minimise environmental damage in the coastal and marine environments, and the role of offsets to compensate for residual damage. Economic principles are used to review current command and control systems, potential incentive based mechanisms, and the development of appropriate offsets. Implementing offsets in the marine environment has a number of challenges, so alternative approaches may be necessary. The study finds that offsets in areas remote from the initial impact, or even to protect different species, may be acceptable provided they result in greater conservation benefits than the standard like-for-like offset. This study is particularly relevant for the design of offsets in the coastal and marine environments where there is limited scope for like-for-like offsets.
Resumo:
This project examines procurement of creative services in a bureaucratic setting and proposes alternative procedures that better negotiate the tensions between creative and bureaucratised ways of working. The outcome is a project procurement strategy called 'Creative Practice Enabled Procurement' and a prototype industry toolkit 'It's Not Shopping! A Guide to Purchasing Innovation and Creativity'. The research is of benefit to managers and creative practitioners, especially those working in interpretive settings. The goal is to propagate better forms of creative procurement across government and private sectors by providing an evidence-based case for improved, practical alternatives.
Resumo:
The visual characteristics of urban environments have been changing dramatically with the growth of cities around the world. Protection and enhancement of landscape character in urban environments have been one of the challenges for policy makers in addressing sustainable urban growth. Visual openness and enclosure in urban environments are important attributes in perception of visual space which affect the human interaction with physical space and which can be often modified by new developments. Measuring visual openness in urban areas results in more accurate, reliable, and systematic approach to manage and control visual qualities in growing cities. Recent advances in techniques in geographic information systems (GIS) and survey systems make it feasible to measure and quantify this attribute with a high degree of realism and precision. Previous studies in this field do not take full advantage of these improvements. This paper proposes a method to measure the visual openness and enclosure in a changing urban landscape in Australia, on the Gold Coast, by using the improved functionality in GIS. Using this method, visual openness is calculated and described for all publicly accessible areas in the selected study area. A final map is produced which shows the areas with highest visual openness and visibility to natural landscape resources. The output of this research can be used by planners and decision-makers in managing and controlling views in complex urban landscapes. Also, depending on the availability of GIS data, this method can be applied to any region including non-urban landscapes to help planners and policy-makers manage views and visual qualities.
Resumo:
BACKGROUND Experimental learning, traditionally conducted in on-campus laboratory venues, is the cornerstone of science and engineering education. In order to ensure that engineering graduates are exposed to ‘real-world’ situations and attain the necessary professional skill-sets, as mandated by course accreditation bodies such as Engineers Australia, face-to-face laboratory experimentation with real equipment has been an integral component of traditional engineering education. The online delivery of engineering coursework endeavours to mimic this with remote and simulated laboratory experimentation. To satisfy student and accreditation requirements, the common practice has been to offer equivalent remote and/or simulated laboratory experiments in lieu of the ones delivered, face-to face, on campus. The current implementations of both remote and simulated laboratories tend to be specified with a focus on technical characteristics, instead of pedagogical requirements. This work attempts to redress this situation by developing a framework for the investigation of the suitability of different experimental educational environments to deliver quality teaching and learning. PURPOSE For the tertiary education sector involved with technical or scientific training, a research framework capable of assessing the affordances of laboratory venues is an important aid during the planning, designing and evaluating stages of face-to-face and online (or cyber) environments that facilitate student experimentation. Providing quality experimental learning venues has been identified as one of the distance-education providers’ greatest challenges. DESIGN/METHOD The investigation draws on the expertise of staff at three Australian universities: Swinburne University of Technology (SUT), Curtin University (Curtin) and Queensland University of Technology (QUT). The aim was to analyse video recorded data, in order to identify the occurrences of kikan-shido (a Japanese term meaning ‘between desks instruction’ and over-the-shoulder learning and teaching (OTST/L) events, thereby ascertaining the pedagogical affordances in face-to-face laboratories. RESULTS These will be disseminated at a Master Class presentation at this conference. DISCUSSION Kikan-shido occurrences did reflect on the affordances of the venue. Unlike with other data collection methods, video recorded data and its analysis is repeatable. Participant bias is minimised or even eradicated and researcher bias tempered by enabling re-coding by others. CONCLUSIONS Framework facilitates the identification of experiential face-to-face learning venue affordances. Investigation will continue with on-line venues.
Resumo:
Since a celebrate linear minimum mean square (MMS) Kalman filter in integration GPS/INS system cannot guarantee the robustness performance, a H(infinity) filtering with respect to polytopic uncertainty is designed. The purpose of this paper is to give an illustration of this application and a contrast with traditional Kalman filter. A game theory H(infinity) filter is first reviewed; next we utilize linear matrix inequalities (LMI) approach to design the robust H(infinity) filter. For the special INS/GPS model, unstable model case is considered. We give an explanation for Kalman filter divergence under uncertain dynamic system and simultaneously investigate the relationship between H(infinity) filter and Kalman filter. A loosely coupled INS/GPS simulation system is given here to verify this application. Result shows that the robust H(infinity) filter has a better performance when system suffers uncertainty; also it is more robust compared to the conventional Kalman filter.
Authorisation management in business process environments: An authorisation model and a policy model
Resumo:
This thesis provides two main contributions. The first one is BP-TRBAC, a unified authorisation model that can support legacy systems as well as business process systems. BP-TRBAC supports specific features that are required by business process environments. BP-TRBAC is designed to be used as an independent enterprise-wide authorisation model, rather than having it as part of the workflow system. It is designed to be the main authorisation model for an organisation. The second contribution is BP-XACML, an authorisation policy language that is designed to represent BPM authorisation policies for business processes. The contribution also includes a policy model for BP-XACML. Using BP-TRBAC as an authorisation model together with BP-XACML as an authorisation policy language will allow an organisation to manage and control authorisation requests from workflow systems and other legacy systems.
Resumo:
A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.
Resumo:
During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.
Resumo:
This case-study examines innovative experimentation with mobile and cloud-based technologies, utilising “Guerrilla Research Tactics” (GRT), as a means of covertly retrieving data from the urban fabric. Originally triggered by participatory action research (Kindon et al., 2008) and unobtrusive research methods (Kellehear, 1993), the potential for GRT lies in its innate ability to offer researchers an alternative, creative approach to data acquisition, whilst simultaneously allowing them to engage with the public, who are active co-creators of knowledge. Key characteristics are political agenda, the unexpected and the unconventional, which allow for an interactive, unique and thought-provoking experience for both researcher and participant.
Resumo:
Purpose – The purpose of this paper is to discuss residents’ views of social and physical environments in a co-housing and in a senior housing setting in Finland. Also, the study aims to point out important connections between well-being and built environment. Design/methodology/approach – The data include interviews and survey responses gathered in the cases. The results and analysis are presented at different case study levels, with the discussion and conclusions following this. Findings – The findings show that the physical environment and common areas have an important role to activate residents. When well-designed common areas exist, a higher level of engagement can be achieved by getting residents involved in the planning and running of activities. Research limitations/implications – This paper discusses residents’ experiences in two Finnish housing settings and it focuses on the housing market in Finland. Practical implications – The findings encourage investors and housing operators to design and invest common areas which could activate residents and create social contacts. Also, investors have to pay attention to the way these developments are managed. Originality/value – This study is the first to investigate the Finnish co-housing setting and compare social and physical environments in a co-housing and a senior house.
Resumo:
There is an increased interest on the use of Unmanned Aerial Vehicles (UAVs) for wildlife and feral animal monitoring around the world. This paper describes a novel system which uses a predictive dynamic application that places the UAV ahead of a user, with a low cost thermal camera, a small onboard computer that identifies heat signatures of a target animal from a predetermined altitude and transmits that target’s GPS coordinates. A map is generated and various data sets and graphs are displayed using a GUI designed for easy use. The paper describes the hardware and software architecture and the probabilistic model for downward facing camera for the detection of an animal. Behavioral dynamics of target movement for the design of a Kalman filter and Markov model based prediction algorithm are used to place the UAV ahead of the user. Geometrical concepts and Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of the user, thus delivering a new way point for autonomous navigation. Results show that the system is capable of autonomously locating animals from a predetermined height and generate a map showing the location of the animals ahead of the user.