281 resultados para Experimental theater.
Resumo:
Although paying taxes is a key element of a well-functioning society, there is still limited understanding as to why people actually pay their taxes. Models emphasizing that taxpayers make strategic, financially motivated compliance decisions seemingly assume an overly restrictive view of human nature. Law abidance may be more accurately explained by social norms, a concept that has gained growing importance as research attempts to understand the tax compliance puzzle. This study analyzes the influence of psychic stress generated by the possibility of breaking social norms in the tax compliance context. We measure psychic stress using heart rate variability (HRV), which captures the psychobiological or neural equivalents of psychic stress that may arise from the contemplation of real or imagined actions, producing immediate physiologic discomfort. The results of our laboratory experiments provide empirical evidence of a positive correlation between psychic stress and tax compliance, thus underscoring the importance of moral sentiments for tax compliance. We also identify three distinct types of individuals who differ in their levels of psychic stress, tax morale, and tax compliance.
Resumo:
Credence goods markets suffer from inefficiencies caused by superior information of sellers about the surplus-maximising quality. While standard theory predicts that equal mark-up prices solve the credence goods problem if customers can verify the quality received, experimental evidence indicates the opposite. We identify a lack of robustness with respect to heterogeneity in social preferences as a possible cause of this and conduct new experiments that allow for parsimonious identification of sellers’ social preference types. Our results confirm the assumed heterogeneity in social preferences and provide strong support for our explanation of the failure of verifiability to increase efficiency.
Resumo:
Lipped channel beams (LCBs) are commonly used as flexural members such as floor joists and bearers in the construction 6 industry. These thin-walled LCBs are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable 7 research in this area, some recent studies have shown that the current web crippling design rules are unable to predict the test capacities under 8 end-two-flange (ETF) and interior-two-flange (ITF) load conditions. In many instances, web crippling predictions by the available design 9 standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 are inconsistent, i.e., unconservative in some cases, although they 10 are conservative in other cases. Hence, experimental studies consisting of 36 tests were conducted in this research to assess the web crippling 11 behavior and capacities of high-strength LCBs under two-flange load cases (ETF and ITF). Experimental results were then compared with the 12 predictions from current design rules. Comparison of the ultimate web crippling capacities from tests showed that the design equations are 13 very unconservative for LCB sections under the ETF load case and are conservative for the ITF load case. Hence, improved equations were 14 proposed to determine the web crippling capacities of LCBs based on the experimental results from this study. Current design equations do 15 not provide the direct strength method (DSM) provisions for web crippling. Hence, suitable design rules were also developed under the DSM 16 format using the test results and buckling analyses using finite-element analyses.
Resumo:
LiteSteel beam (LSB) is a hollow flange channel made from cold-formed steel using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. LSBs are currently used as floor joists and bearers in buildings. However, there are no appropriate design standards available due to its unique hollow flange geometry, residual stress characteristics and initial geometric imperfections arising from manufacturing processes. Recent research studies have focused on investigating the structural behaviour of LSBs under pure bending, predominant shear and combined actions. However, web crippling behaviour and strengths of LSBs still need to be examined. Therefore, an experimental study was undertaken to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 23 web crippling tests were performed and the results were compared with the current AS/NZS 4600 and AISI S100 design standards, which showed that the cold-formed steel design rules predicted the web crippling capacity of LSB sections very conservatively under EOF and IOF load cases. Therefore, suitably improved design equations were proposed to determine the web crippling capacity of LSBs based on experimental results. In addition, new design equations were also developed under the Direct Strength Method format. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases and the results.
Resumo:
This paper presents the details of experimental and numerical studies on the web crippling behaviour of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies consisting of 28 tests were first conducted in this research to assess the web crippling behaviour and strengths of LSBs under two flange load cases (ETF and ITF). Experimental web crippling capacity results were then compared with the predictions from AS/NZS 4600 and AISI S100 design rules, which showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LSBs under ETF and ITF load cases. Hence improved equations were proposed to determine the web crippling capacities of LSBs. Finite element models of the tested LSBs were then developed, and used to determine the elastic buckling loads of LSBs under ETF and ITF load cases. New equations were proposed to determine the corresponding elastic buckling coefficients of LSBs. Finally suitable design rules were also developed under the Direct Strength Method format using the test results and buckling analysis results from finite element analyses.
Resumo:
This paper presents a novel RTK-based GNSS Lagrangian drifter system that is capable of monitoring water velocity, turbulence and dispersion coefficients of river and estuarine. The Lagrangian drifters use the dual-frequency real time kinematic (RTK) technique for both position and velocity estimations. The capsule is designed to meet the requirements such as minimizing height, diameter, minimizing the direct wind drag, positive buoyancy for satellite signal reception and stability, and waterproof housing for electronic components, such as GNSS receiver and computing board. The collected GNSS data are processed with post-processing RTK software. Several experiments have been carried out in two rivers in Brisbane and Sunshine Coast in Queensland. Results show that the high accuracy GNSS-drifters can be used to measure dispersion coefficient resulting from sub-tidal velocity fluctuations in shallow tidal water. In addition, the RTK-GNSS drifters respond well to vertical motion and thus could be applicable to flood monitoring.
Resumo:
This paper presents an experimental investigation on the lateral impact performance of axially loaded concrete-filled double-skin tube (CFDST) columns. These columns have desirable structural and constructional properties and have been used as columns in building, legs of off shore platforms and as bridge piers. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, an experimental method employing an innovative instrumented horizontal impact testing system (HITS) was developed to apply lateral impact loads whilst the column maintained a static axial pre-loading to examine the failure mechanism and key response parameters of the column. These included the time histories of impact force, reaction forces, global lateral deflection and permanent local buckling profile. Eight full scale columns were tested for key parameters including the axial load level and impact location. Based on the test data, the failure mode, peak impact force, impact duration, peak reaction forces, reaction force duration, column maximum and residual global deflections and column local buckling length, depth and width under varying conditions are analysed and discussed. It is evident that the innovative HITS can successfully test structural columns under the combination of axial pre-loading and impact loading. The findings on the lateral impact response of the CFDST columns can serve as a benchmark reference for their future analysis and design.
Resumo:
This research treats the lateral impact behaviour of composite columns, which find increasing use as bridge piers and building columns. It offers (1) innovative experimental methods for testing structural columns, (2) dynamic computer simulation techniques as a viable tool in analysis and design of such columns and (3) significant new information on their performance which can be used in design. The research outcomes will enable to protect lives and properties against the risk of vehicular impacts caused either accidentally or intentionally.
Resumo:
This paper presents an experimental investigation on the lateral impact response of axially loaded concrete filled double skin tube (CFDST) columns. A total of four test series are being conducted at Queensland University of Technology using a novel horizontal impact-testing rig. The test results reported in this paper are from the first test series, where the columns are pinned at both ends and impacted at mid-span. In the next three series, effects of support conditions, impact location and repeated impact will be treated. The main objectives of the current paper are to describe the innovative testing procedure and provide some insight into the lateral impact behavior and failure of simply supported axially pre-loaded CFDST columns. The results include time histories of impact forces, reaction forces, axial force and global lateral deflection. Based on the test data, the failure mode, peak impact force, peak reaction forces, maximum deflection and residual deflection, with and without axial load, are analyzed and discussed. The findings of this study will serve as a benchmark reference for future analysis and design of CFDST columns.
Resumo:
Hedonic property price analysis tells us that property prices can be affected by natural hazards such as floods. This paper examines the impact of flood-related variables (among other factors) on property values, and examines the effect of the release of flood risk map information on property values by comparing the impact with the effect of an actual flood incidence. An examination of the temporal variation of flood impacts on property values is also made. The study is the first of its kind where the impact of the release of flood risk map information to the public is compared with an actual flood incident. In this study, we adopt a spatial quasi-experimental analysis using the release of flood risk maps by Brisbane City Council in Queensland, Australia, in 2009 and the actual floods of 2011. The results suggest that property buyers are more responsive to the actual incidence of floods than to the disclosure of information to the public on the risk of floods.
Resumo:
We study the effect of affirmative action on effort in an experiment conducted in high schools in socioeconomically disadvantaged areas in Queensland, Australia. All participating schools have a large representation of indigenous Australians, a population group that is frequently targeted by affirmative action. Our participants perform a simple real-effort task in a competitive setting. Those ranked in the top third receive a high piece-rate payment and all the others receive a low payment. We introduce affirmative action by providing the lowest (bottom third) performers with a positive handicap increasing their chances to achieve the high payment target. Our findings show that the policy increases effort of those that it aims to favour, without discouraging effort of those who are indirectly penalized by affirmative action.