510 resultados para Error detection
Resumo:
News blog hot topics are important for the information recommendation service and marketing. However, information overload and personalized management make the information arrangement more difficult. Moreover, what influences the formation and development of blog hot topics is seldom paid attention to. In order to correctly detect news blog hot topics, the paper first analyzes the development of topics in a new perspective based on W2T (Wisdom Web of Things) methodology. Namely, the characteristics of blog users, context of topic propagation and information granularity are unified to analyze the related problems. Some factors such as the user behavior pattern, network opinion and opinion leader are subsequently identified to be important for the development of topics. Then the topic model based on the view of event reports is constructed. At last, hot topics are identified by the duration, topic novelty, degree of topic growth and degree of user attention. The experimental results show that the proposed method is feasible and effective.
Resumo:
Knowledge of the elements present in house dusts is important in understanding potential health effects on humans. In this study, dust samples collected from 10 houses in south-east Queensland have been analysed by scanning electron microscopy and X-ray microanalysis to measure the inorganic element compositions and to investigate the form of heavy metals in the dusts. The overall analytical results were then used to discriminate between different localities using chemometric techniques. The relative amounts of elements, particularly of Si, Ca, and Fe, varied between size fractions and between different locations for the same size fraction. By analysing individual small particles, many other constituents were identified including Ti, Cr, Mn, Ni, Cu, Zn, Ba, Ag, W, Au, Hg, Pb, Bi, La and Ce. The heavy metals were mostly concentrated in small particles in the smaller size fractions, which allowed detection by particle analysis, though their average concentrations were very low.
Resumo:
Static anaylsis represents an approach of checking source code or compiled code of applications before it gets executed. Chess and McGraw state that static anaylsis promises to identify common coding problems automatically. While manual code checking is also a form of static analysis, software tools are used in most cases in order to perform the checks. Chess and McGraw additionaly claim that good static checkers can help to spot and eradicate common security bugs.
Resumo:
We propose CIMD (Collaborative Intrusion and Malware Detection), a scheme for the realization of collaborative intrusion detection approaches. We argue that teams, respectively detection groups with a common purpose for intrusion detection and response, improve the measures against malware. CIMD provides a collaboration model, a decentralized group formation and an anonymous communication scheme. Participating agents can convey intrusion detection related objectives and associated interests for collaboration partners. These interests are based on intrusion objectives and associated interests for collaboration partners. These interests are based on intrusion detection related ontology, incorporating network and hardware configurations and detection capabilities. Anonymous Communication provided by CIMD allows communication beyond suspicion, i.e. the adversary can not perform better than guessing an IDS to be the source of a message at random. The evaluation takes place with the help of NeSSi² (www.nessi2.de), the Network Security Simulator, a dedicated environment for analysis of attacks and countermeasures in mid-scale and large-scale networks. A CIMD prototype is being built based on the JIAC agent framework(www.jiac.de).
Resumo:
This paper presents a formal methodology for attack modeling and detection for networks. Our approach has three phases. First, we extend the basic attack tree approach 1 to capture (i) the temporal dependencies between components, and (ii) the expiration of an attack. Second, using the enhanced attack trees (EAT) we build a tree automaton that accepts a sequence of actions from input stream if there is a traverse of an attack tree from leaves to the root node. Finally, we show how to construct an enhanced parallel automaton (EPA) that has each tree automaton as a subroutine and can process the input stream by considering multiple trees simultaneously. As a case study, we show how to represent the attacks in IEEE 802.11 and construct an EPA for it.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.
Resumo:
Anomaly detection compensates shortcomings of signature-based detection such as protecting against Zero-Day exploits. However, Anomaly Detection can be resource-intensive and is plagued by a high false-positive rate. In this work, we address these problems by presenting a Cooperative Intrusion Detection approach for the AIS, the Artificial Immune System, as an example for an anomaly detection approach. In particular we show, how the cooperative approach reduces the false-positive rate of the detection and how the overall detection process can be organized to account for the resource constraints of the participating devices. Evaluations are carried out with the novel network simulation environment NeSSi as well as formally with an extension to the epidemic spread model SIR
Resumo:
The power of testing for a population-wide association between a biallelic quantitative trait locus and a linked biallelic marker locus is predicted both empirically and deterministically for several tests. The tests were based on the analysis of variance (ANOVA) and on a number of transmission disequilibrium tests (TDT). Deterministic power predictions made use of family information, and were functions of population parameters including linkage disequilibrium, allele frequencies, and recombination rate. Deterministic power predictions were very close to the empirical power from simulations in all scenarios considered in this study. The different TDTs had very similar power, intermediate between one-way and nested ANOVAs. One-way ANOVA was the only test that was not robust against spurious disequilibrium. Our general framework for predicting power deterministically can be used to predict power in other association tests. Deterministic power calculations are a powerful tool for researchers to plan and evaluate experiments and obviate the need for elaborate simulation studies.
Resumo:
Vibration Based Damage Identification Techniques which use modal data or their functions, have received significant research interest in recent years due to their ability to detect damage in structures and hence contribute towards the safety of the structures. In this context, Strain Energy Based Damage Indices (SEDIs), based on modal strain energy, have been successful in localising damage in structuers made of homogeneous materials such as steel. However, their application to reinforced concrete (RC) structures needs further investigation due to the significant difference in the prominent damage type, the flexural crack. The work reported in this paper is an integral part of a comprehensive research program to develop and apply effective strain energy based damage indices to assess damage in reinforced concrete flexural members. This research program established (i) a suitable flexural crack simulation technique, (ii) four improved SEDI's and (iii) programmable sequentional steps to minimise effects of noise. This paper evaluates and ranks the four newly developed SEDIs and existing seven SEDIs for their ability to detect and localise flexural cracks in RC beams. Based on the results of the evaluations, it recommends the SEDIs for use with single and multiple vibration modes.
Resumo:
Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.
Resumo:
Speaker diarization is the process of annotating an input audio with information that attributes temporal regions of the audio signal to their respective sources, which may include both speech and non-speech events. For speech regions, the diarization system also specifies the locations of speaker boundaries and assign relative speaker labels to each homogeneous segment of speech. In short, speaker diarization systems effectively answer the question of ‘who spoke when’. There are several important applications for speaker diarization technology, such as facilitating speaker indexing systems to allow users to directly access the relevant segments of interest within a given audio, and assisting with other downstream processes such as summarizing and parsing. When combined with automatic speech recognition (ASR) systems, the metadata extracted from a speaker diarization system can provide complementary information for ASR transcripts including the location of speaker turns and relative speaker segment labels, making the transcripts more readable. Speaker diarization output can also be used to localize the instances of specific speakers to pool data for model adaptation, which in turn boosts transcription accuracies. Speaker diarization therefore plays an important role as a preliminary step in automatic transcription of audio data. The aim of this work is to improve the usefulness and practicality of speaker diarization technology, through the reduction of diarization error rates. In particular, this research is focused on the segmentation and clustering stages within a diarization system. Although particular emphasis is placed on the broadcast news audio domain and systems developed throughout this work are also trained and tested on broadcast news data, the techniques proposed in this dissertation are also applicable to other domains including telephone conversations and meetings audio. Three main research themes were pursued: heuristic rules for speaker segmentation, modelling uncertainty in speaker model estimates, and modelling uncertainty in eigenvoice speaker modelling. The use of heuristic approaches for the speaker segmentation task was first investigated, with emphasis placed on minimizing missed boundary detections. A set of heuristic rules was proposed, to govern the detection and heuristic selection of candidate speaker segment boundaries. A second pass, using the same heuristic algorithm with a smaller window, was also proposed with the aim of improving detection of boundaries around short speaker segments. Compared to single threshold based methods, the proposed heuristic approach was shown to provide improved segmentation performance, leading to a reduction in the overall diarization error rate. Methods to model the uncertainty in speaker model estimates were developed, to address the difficulties associated with making segmentation and clustering decisions with limited data in the speaker segments. The Bayes factor, derived specifically for multivariate Gaussian speaker modelling, was introduced to account for the uncertainty of the speaker model estimates. The use of the Bayes factor also enabled the incorporation of prior information regarding the audio to aid segmentation and clustering decisions. The idea of modelling uncertainty in speaker model estimates was also extended to the eigenvoice speaker modelling framework for the speaker clustering task. Building on the application of Bayesian approaches to the speaker diarization problem, the proposed approach takes into account the uncertainty associated with the explicit estimation of the speaker factors. The proposed decision criteria, based on Bayesian theory, was shown to generally outperform their non- Bayesian counterparts.
Resumo:
This paper provides a new general approach for defining coherent generators in power systems based on the coherency in low frequency inter-area modes. The disturbance is considered to be distributed in the network by applying random load changes which is the random walk representation of real loads instead of a single fault and coherent generators are obtained by spectrum analysis of the generators velocity variations. In order to find the coherent areas and their borders in the inter-connected networks, non-generating buses are assigned to each group of coherent generator using similar coherency detection techniques. The method is evaluated on two test systems and coherent generators and areas are obtained for different operating points to provide a more accurate grouping approach which is valid across a range of realistic operating points of the system.
Resumo:
This paper presents a study whereby a series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine fitted with a piston having an undersized skirt. This experimental simulation resulted in engine running conditions that included abnormally high levels of piston slap occurring in one of the cylinders. The detectability of the resultant Diesel engine piston slap was investigated using acoustic emission signals. Data corresponding to both normal and piston slap engine running conditions was captured using acoustic emission transducers along with both; in-cylinder pressure and top-dead centre reference signals. Using these signals it was possible to demonstrate that the increased piston slap running conditions were distinguishable by monitoring the piston slap events occurring near the piston mid-stroke positions. However, when monitoring the piston slap events occurring near the TDC/BDC piston stroke positions, the normal and excessive piston slap engine running condition were not clearly distinguishable.
Resumo:
Background: Measurement accuracy is critical for biomechanical gait assessment. Very few studies have determined the accuracy of common clinical rearfoot variables between cameras with different collection frequencies. Research question: What is the measurement error for common rearfoot gait parameters when using a standard 30Hz digital camera compared to 100Hz camera? Type of study: Descriptive. Methods: 100 footfalls were recorded from 10 subjects ( 10 footfalls per subject) running on a treadmill at 2.68m/s. A high-speed digital timer, accurate within 1ms served as an external reference. Markers were placed along the vertical axis of the heel counter and the long axis of the shank. 2D coordinates for the four markers were determined from heel strike to heel lift. Variables of interest included time of heel strike (THS), time of heel lift (THL), time to maximum eversion (TMax), and maximum rearfoot eversion angle (EvMax). Results: THS difference was 29.77ms (+/- 8.77), THL difference was 35.64ms (+/- 6.85), and TMax difference was 16.50ms (+/- 2.54). These temporal values represent a difference equal to 11.9%, 14.3%, and 6.6% of the stance phase of running gait, respectively. EvMax difference was 1.02 degrees (+/- 0.46). Conclusions: A 30Hz camera is accurate, compared to a high-frequency camera, in determining TMax and EvMax during a clinical gait analysis. However, relatively large differences, in excess of 12% of the stance phase of gait, for THS and THL variables were measured.