394 resultados para Construction Industry Council
Resumo:
Despite the increasing significance of the construction industry as an emerging sector of the Australian economy, there is inadequate research performed on construction design firms in terms of theoretical and empirical foundations. Although past research has identified the barriers and success factors for firm market entry, evidence suggests that to date no research has explicitly explored the sustainability of construction design firms in international markets. SMEs and their approach to firm internationalisation differ significantly from large manufacturing firms and a vast majority of construction design firms operate as SMEs. This paper develops a sustainable business model for construction design SMEs, which rely upon the development of clear Client Following (CF) versus Market Seeking (MS) strategies to support internal firm strategic and operational management. The understanding of these strategies is vital as the application of either will shape the design management approach of firms, which would in turn impact on the sustainability of these firms in foreign markets. Long-term sustainability of firms in international markets relies heavily upon client satisfaction. Client and project team participants’ communication during various design processes has often been problematic and the added difficulty of communicating across international boundaries further compounds the problem of capturing and maintaining client’s requirements. Therefore this paper develops a model for economic sustainability of Australian construction design firms working in international markets by exploring factors that affect client satisfaction across international boundaries, through the development of business performance indicators. These include not only the critical financial capital but also other ‘softer’ indicators, namely: social, cultural and intellectual capital. These act as a firm’s measure of success and the acquisition of this type of capital will provide significant advantages to firms’ success, hence sustainability in international markets.
Resumo:
The early stages of the building design process are when the most far reaching decisions are made regarding the configuration of the proposed project. This paper examines methods of providing decision support to building designers across multiple disciplines during the early stage of design. The level of detail supported is at the massing study stage where the basic envelope of the project is being defined. The block outlines on the building envelope are sliced into floors. Within a floor the only spatial divisions supported are the “user” space and the building core. The building core includes vertical transportation systems, emergency egress and vertical duct runs. The current focus of the project described in the paper is multi-storey mixed use office/residential buildings with car parking. This is a common type of building in redevelopment projects within and adjacent to the central business districts of major Australian cities. The key design parameters for system selection across the major systems in multi-storey building projects - architectural, structural, HVAC, vertical transportation, electrical distribution, fire protection, hydraulics and cost – are examined. These have been identified through literature research and discussions with building designers from various disciplines. This information is being encoded in decision support tools. The decision support tools communicate through a shared database to ensure that the relevant information is shared across all of the disciplines. An internal data model has been developed to support the very early design phase and the high level system descriptions required. A mapping to IFC 2x2 has also been defined to ensure that this early information is available at later stages of the design process.
Resumo:
Project Diagnostics is a tool for construction industry stakeholders wishing to improve project delivery and outcomes. This software identifies areas of poor project health, then establishes probable root causes and provides suggested remedial measures. Its focus is to act as an advanced warning system for construction projects that are failing to meet predetermined objectives based on the critical success factors (CSFs) of cost, time, quality, safety, relationships, environment and stakeholder value.
Resumo:
This was a two-stage project to inform the Australian property and construction industry generally, and to provide the Australian Building Codes Board (ABCB) with information to allow it to determine whether or not sustainability requirements are necessary in the Future Building Code of Australia (BCA21). Research objectives included: examine overseas sustainability requirements for buildings and outline the reason why it is controlled and regulated in the particular country, state, principality etc. examine studies focusing on sustainability developments in buildings in Australia and overseas identify potential issues and implications associated with sustainable building requirements provide advice on whether provisions are necessary in the BCA21 to make buildings sustainable if the study determines there is a need for sustainability requirements in the BCA21, the study was to demonstrate the need to control and regulate along with the method to control and regulate. This research was broken down into two stages. Stage 1 was a literature review of international requirements as well as current thinking and practice for sustainable building developments. Stage 2 identified issues and implications of sustainability requirements for buildings and advice on whether provisions are necessary in the BCA21. This stage included workshops in all capital cities and involved key stakeholders, such as regulators, local government and representatives from key associations. This final report brings together the work of both stages, along with a searchable internet database of references and a series of nine key recommendations.
Resumo:
Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.
Resumo:
The innovation diffusion and knowledge management literature strongly supports the importance of communities of practice (COP) for enabling knowledge about how to use and adopt innovation initiatives. One of the most powerful tools for innovation diffusion is word-of-mouth wisdom from committed individuals who mentor and support each other. Close proximity for face-to-face interaction is highly effective, however, many organisations are geographically dispersed with projects being virtual linked sub-organisations using ICT to communicate. ICT has also introduced a useful facilitating technology for developing knowledge networks. This paper presents findings from a research program concentrating on ICT innovation diffusion in the Australian construction industry. One way in which ICT diffusion is taking place was found to be through within-company communities of practice. We undertook in-depth unstructured interviews with three of the major 10 to 15 contractors in Australia to discuss their ICT diffusion strategies. We discovered that in all three cases,within company networked communities of practice was a central strategy. Further, effective diffusion of ICT groupware tools can be critical in developing COP where they are geographically dispersed.
Resumo:
This paper examines knowledge management and innovation in the Australian Construction Industry. A conceptual model is presented, based upon analysis of the literature and a series of preliminary construction industry interviews. Extensive knowledge management (KM) research has focused upon types of knowledge contained within specific organizational settings. However, we argue that a crucial missing link in KM research concerns the interface between flows of knowledge from external sources of innovations and its channelization in and out, and between organizations. This interface, regulating and facilitating knowledge from external sources of innovation into the organisation, operates under the influence of two main forces visualized as “pulling” and “pushing” forces in the model presented in this paper. The premise of the model lies in a hypothesis that as an organization changes itself into a more mature, learning organization (LO) over time, knowledge flows into it through “pull” rather than “push” forces. We conclude that a successful knowledge management initiative installs a learning and knowledge sharing culture, which is easily adaptable to new learning offering little resistance to new knowledge that flows into the organisation. The model bridges the gap between research and its application in construction practice.
Resumo:
The construction industry is a key national economic component. It tends to be at the forefront of cyclic changes in the Australian economy. It has a significant impact, both directly and indirectly, on the efficiency and productivity of other industries. Moreover it affects everyone to a greater or lesser extent; through its products whether they are manifested in the physical infrastructure that supports the operation of the economy or through the built environment that directly impacts on the quality of life experienced by individuals. In financial terms the industry makes one of the largest contributions to the Australian economy, accounting for 4.7 per cent of GDP 1 which was worth over $30B in 20012. The construction industry is comprised of a myriad of small firms, across several important sectors including, o Residential building, o Commercial building, o Building services, o Engineering, o Infrastructure o Facilities Management o Property Development Each sector is typified by firms that have distinctive characteristics such as the number of employees, size and value of contracts, number of jobs, and so forth. It tends to be the case that firms operating in commercial building are larger than those involved in residential construction. The largest contractors are found in engineering and infrastructure, as well as in the commercial building sub-sectors. However all sectors are characterised by their reliance upon sub-contractors to carry out on-site operations. Professionals from the various design consultant groups operate across all of these sectors. This description masks one of the most significant underlying causes of inefficiency in the construction industry, namely its fragmentation. The Construction Industry chapter of the 2004 Australian Year Book3, published by the Australian Bureau of Statistics unmasks the industry’s fragmented structure, typified by the large number of operating businesses within it, the vast majority of which are small companies employing less than 5 people. It identifies over 190,000 firms, of which over 90 percent employ less than 5 people. At the other end of the spectrum, firms employing 20 or more people account for fractionally more than one percent of businesses in the industry.
Resumo:
Off-site manufacture (OSM) offers numerous benefits to all parties in the construction process. The uptake of OSM in Australia has, however, been limited. This limited uptake corresponds to similar trends in the UK and US, although the level of OSM there appears to be increasing. This project undertook three workshops — one each in Victoria, Queensland and Western Australia — and 18 interviews with key stakeholders to assist in identifying the general benefits and barriers to OSM uptake in the Australian construction industry. Seven case studies were also undertaken, involving construction projects that used OSM, ranging from civil projects through to residential. Each of these case studies has been analysed to identify what worked and what didn’t, and suggest the lessons to be learned from each project.
Resumo:
Much has been written on Off-site Manufacture (OSM) in construction, particularly regarding the perceived benefits and barriers to implementation. However, very little understanding of the state of OSM in the Australian construction industry exists. A ‘scoping study' has recently been undertaken to determine the ‘state-of-the-art’ of OSM in Australia. This involved several industry workshops, interviews and case studies across four major states of Australia. The study surveyed a range of suppliers across the construction supply-chain, incorporating the civil, commercial and housing segments of the market. This revealed that skills shortages and lack of adequate OSM knowledge are generally the greatest issues facing OSM in Australia. The drivers and constraints that emerged from the research were, in large measure, consistent with those found in the US and UK, although some Australian anomalies are evident, such as the geographical disparity of markets. A comparative analysis with similar studies in the UK and US is reported, illustrating both the drivers and constraints confronting the industry in Australia. OSM uptake into the future is however dependent on many factors, not least of which is a better understanding of the construction process and its associated costs.
Resumo:
After many years of development BIM (Building Information Modelling) is starting to achieve significant penetration into the building sector of the construction industry. This paper describes the current status of BIM and the drivers that are motivating the change from 2D CAD to BIM within the building sector. The paper then discusses what the implications of the technology underlying BIM may be for the civil construction sector of the construction industry. A project carried out by the Cooperative Research Centre for Construction Innovation is used as an example of this technology as well as several international examples.
Resumo:
The Safety Effectiveness Indicators (SEI) Project has used extensive research to determine what safety effectiveness measures can be developed by industry, for industry use to improve its safety performance. These indicators can measure how effectively the 13 safety management tasks1 (SMTs) selected for this workbook are undertaken. Currently, positive performance indicators (PPIs) are only able to measure the number of activities undertaken. They do not provide information on whether each activity is being undertaken effectively, and therefore do not provide data which can be used by industry to target areas of focus and improvement. The initial workbook contained six SMTs, and was piloted on various construction sites during August 2008. The workbook was refined through feedback from the pilot, and 13 SMTs were used in a field trial during the months of October, November and December 2008. The project team also carried out 12 focus groups in Brisbane, Canberra, Sydney and Melbourne during April, May and June 2008, and developed an initial format of this workbook through these groups and team workshops. Simplification of the language was a recurring theme, and we have attempted to do this throughout the project. The challenge has been to ensure we keep the descriptions short, to the point and relevant to all companies, without making them too specific. The majority of the construction industry participants also requested an alteration to the scale used, so a ‘Yes’/‘No’/’Not applicable’ format is used in this workbook. This workbook, based on industry feedback, is for use on site by various construction companies and contains 13 SMTs. However, you are invited to personalise the SEI tools to better suit your individual company and workplaces.
Resumo:
Cohen (1977) reviewed the then current research on occupational safety and stated that both strong company commitment to safety, and communication between all levels of a company are the most influential factors to improving safety. Other relevant factors included careful selection of staff, and early and continuous training throughout the lifetime with the company. These continue to be important factors in OHS today. There has been a continued decrease in the injury rates since Cohen’s review within the Australian construction industry, however, the construction industry has far more injuries and ill-health than the Australian average, with one fatality occurring on average per week in the Australian Construction Industry. The Fatality rate in the building and construction industry remains three times higher than the national average, and 15% of all industry fatalities are in the building and construction industry. In addition the construction industry pays one of the highest workers’ compensation premium rates – in 2001 alone approximately 0.5% ($267 million) of revenue would have to be allocated to the direct cost of 1998/99 compensations (Office of the Federal Safety Commissioner, 2006). Based on these statistics there is a need to measure and improve safety performance within the construction industry.
Resumo:
Effective knowledge transfer can prevent the reinvention of systems and ideas as well as the repetition of errors. Doing so will save substantial time, as well as contribute to better performance of projects and project-based organisations (PBOs). Despite the importance of knowledge, PBOs face serious barriers to the effective transfer of knowledge, while their characteristics, such as unique and innovative approaches taken during every project, mean they have much to gain from knowledge transfer. As each new project starts, there is the strong potential to reinvent the process, rather than utilise learning from previous projects. In fact, rework is one of the primary factors contributing to construction industry's poor performance and productivity. Current literature has identified several barriers to knowledge transfer in organisational settings in general, and not specifically PBOs. However, PBOs significantly differ from other types of organisations. PBOs operate mainly on temporary projects, where time is a crucial factor and people are more mobile than in other organisational settings. The aim of this research is to identify the key barriers that prevent effective knowledge transfer for PBOs, exclusively. Interviews with project managers and senior managers of PBOs complement the analysis of the literature and provide professional expertise. This research is crucial to gaining a better understanding of obstacles that hinder knowledge transfer in projects. The main contribution of this research is exclusive for PBO, list of key barriers that organisation and project managers need to consider to ensure effective knowledge transfer and better project management.