449 resultados para Computation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose three meta-heuristic algorithms for the permutation flowshop (PFS) and the general flowshop (GFS) problems. Two different neighborhood structures are used for these two types of flowshop problem. For the PFS problem, an insertion neighborhood structure is used, while for the GFS problem, a critical-path neighborhood structure is adopted. To evaluate the performance of the proposed algorithms, two sets of problem instances are tested against the algorithms for both types of flowshop problems. The computational results show that the proposed meta-heuristic algorithms with insertion neighborhood for the PFS problem perform slightly better than the corresponding algorithms with critical-path neighborhood for the GFS problem. But in terms of computation time, the GFS algorithms are faster than the corresponding PFS algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the missing covariate problem which is often encountered in survival analysis. Three covariate imputation methods are employed in the study, and the effectiveness of each method is evaluated within the hazard prediction framework. Data from a typical engineering asset is used in the case study. Covariate values in some time steps are deliberately discarded to generate an incomplete covariate set. It is found that although the mean imputation method is simpler than others for solving missing covariate problems, the results calculated by it can differ largely from the real values of the missing covariates. This study also shows that in general, results obtained from the regression method are more accurate than those of the mean imputation method but at the cost of a higher computational expensive. Gaussian Mixture Model (GMM) method is found to be the most effective method within these three in terms of both computation efficiency and predication accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application specific evolutionary algorithm (EA) implemented entirely on a field programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, compliments it to be an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and three-dimensional terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment and mission profiles. The architecture has been successfully synthesised for a target Xilinx Virtex-4 FPGA platform with 32% logic slices utilisation. Results obtained from case studies for a small UAV helicopter with environment derived from LIDAR (Light Detection and Ranging) data verify the effectiveness of the proposed FPGA-based path planner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an extended granule mining based methodology, to effectively describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other granules, it provides a kind of novel knowledge in databases. We also provide an algorithm to implement the proposed methodology. The experiments conducted to characterize a real network traffic data collection show that the proposed concepts and algorithm are promising.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initial crack widely exists in the welded members of steel bridge induced by the welding procedure or by the fatigue damage crack initiation. The behavior of crack growth with a view to fatigue damage accumulation on the tip of cracks is discussed. Fatigue life of welded components with initial crack in bridges under traffic loading is investigated. Based on existing fatigue experiment results of welded members with initial crack and the fatigue experiment results of welded bridge members under constant stress cycles, the crack would keep semi-elliptical shape with variable ratio of a/c during the crack propagation. Based on the concept of continuum damage accumulated on the tip of fatigue cracks,the fatigue damage law suitable for steel bridge members under traffic loading is modified to consider the crack growth.The virtual crack growth method and the semi-elliptical crack shape assumption are proposed in this paper to deduce a new model of fatigue crack growth rate for welded bridge members under traffic loading. And the calculated method of the stress intensity factor necessary for evaluation of the fatigue life of welded bridge members with cracks is discussed.The proposed fatigue crack growth model is then applied to calculate the crack growth and the fatigue life of existing welded members with fatigue experimental results. The fatigue crack propagation computation results show that the ratio of crack depth to the half crack surface length a/c is variable during crack propagation process and the stress cycle increases with the increase of a0/c0 with certain a0/t0 .The calculated and measured fatigue lives are generally in good agreement,at some initial conditions of cracking, for welded members widely used in steel bridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The optimization process was made using the ROS-Gazebo 3D simulation with purposeful extensions developed for our experiments. Visual servoing is achieved through an image processing front-end that uses the Camshift algorithm to detect and track objects in the scene. Experimental flight trials using a small quadrotor were performed to validate the parameters estimated from simulation. The integration of cross- entropy methods is a straightforward way to estimate optimal gains achieving excellent results when tested in real flights.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) industry is a fast growing sector. Nowadays, the market offers numerous possibilities for off-the-shelf UAVs such as quadrotors or fixed-wings. Until UAVs demonstrate advance capabilities such as autonomous collision avoidance they will be segregated and restricted to flight in controlled environments. This work presents a visual fuzzy servoing system for obstacle avoidance using UAVs. To accomplish this task we used the visual information from the front camera. Images are processed off-board and the result send to the Fuzzy Logic controller which then send commands to modify the orientation of the aircraft. Results from flight test are presented with a commercial off-the-shelf platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Affine covariant local image features are a powerful tool for many applications, including matching and calibrating wide baseline images. Local feature extractors that use a saliency map to locate features require adaptation processes in order to extract affine covariant features. The most effective extractors make use of the second moment matrix (SMM) to iteratively estimate the affine shape of local image regions. This paper shows that the Hessian matrix can be used to estimate local affine shape in a similar fashion to the SMM. The Hessian matrix requires significantly less computation effort than the SMM, allowing more efficient affine adaptation. Experimental results indicate that using the Hessian matrix in conjunction with a feature extractor that selects features in regions with high second order gradients delivers equivalent quality correspondences in less than 17% of the processing time, compared to the same extractor using the SMM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The position of housing demand and supply is not consistent. The Australian situation counters the experience demonstrated in many other parts of the world in the aftermath of the Global Financial Crisis, with residential housing prices proving particularly resilient. A seemingly inexorable housing demand remains a critical issue affecting the socio-economic landscape. Underpinned by high levels of population growth fuelled by immigration, and further buoyed by sustained historically low interest rates, increasing income levels, and increased government assistance for first home buyers, this strong housing demand level ensures problems related to housing affordability continue almost unabated. A significant, but less visible factor impacting housing affordability relates to holding costs. Although only one contributor in the housing affordability matrix, the nature and extent of holding cost impact requires elucidation: for example, the computation and methodology behind the calculation of holding costs varies widely - and in some instances completely ignored. In addition, ambiguity exists in terms of the inclusion of various elements that comprise holding costs, thereby affecting the assessment of their relative contribution. Such anomalies may be explained by considering that assessment is conducted over time in an ever-changing environment. A strong relationship with opportunity cost - in turn dependant inter alia upon prevailing inflation and / or interest rates - adds further complexity. By extending research in the general area of housing affordability, this thesis seeks to provide a detailed investigation of those elements related to holding costs specifically in the context of midsized (i.e. between 15-200 lots) greenfield residential property developments in South East Queensland. With the dimensions of holding costs and their influence over housing affordability determined, the null hypothesis H0 that holding costs are not passed on can be addressed. Arriving at these conclusions involves the development of robust economic and econometric models which seek to clarify the componentry impacts of holding cost elements. An explanatory sequential design research methodology has been adopted, whereby the compilation and analysis of quantitative data and the development of an economic model is informed by the subsequent collection and analysis of primarily qualitative data derived from surveying development related organisations. Ultimately, there are significant policy implications in relation to the framework used in Australian jurisdictions that promote, retain, or otherwise maximise, the opportunities for affordable housing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical simulations for mixed convection of micropolar fluid in an open ended arc-shape cavity have been carried out in this study. Computation is performed using the Alternate Direct Implicit (ADI) method together with the Successive Over Relaxation (SOR) technique for the solution of governing partial differential equations. The flow phenomenon is examined for a range of values of Rayleigh number, 102 ≤ Ra ≤ 106, Prandtl number, 7 ≤ Pr ≤ 50, and Reynolds number, 10 ≤ Re ≤ 100. The study is mainly focused on how the micropolar fluid parameters affect the fluid properties in the flow domain. It was found that despite the reduction of flow in the core region, the heat transfer rate increases, whereas the skin friction and microrotation decrease with the increase in the vortex viscosity parameter, Δ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors present a Cause-Effect fault diagnosis model, which utilises the Root Cause Analysis approach and takes into account the technical features of a digital substation. The Dempster/Shafer evidence theory is used to integrate different types of fault information in the diagnosis model so as to implement a hierarchical, systematic and comprehensive diagnosis based on the logic relationship between the parent and child nodes such as transformer/circuit-breaker/transmission-line, and between the root and child causes. A real fault scenario is investigated in the case study to demonstrate the developed approach in diagnosing malfunction of protective relays and/or circuit breakers, miss or false alarms, and other commonly encountered faults at a modern digital substation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of discovered features in relevance feedback (RF) is the key issue for effective search query. Most existing feedback methods do not carefully address the issue of selecting features for noise reduction. As a result, extracted noisy features can easily contribute to undesirable effectiveness. In this paper, we propose a novel feature extraction method for query formulation. This method first extract term association patterns in RF as knowledge for feature extraction. Negative RF is then used to improve the quality of the discovered knowledge. A novel information filtering (IF) model is developed to evaluate the proposed method. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics confirm that the proposed model achieved encouraging performance compared to state-of-the-art IF models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.