362 resultados para CERAMIC-CARBON
Resumo:
Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.
Resumo:
Large arrays and networks of carbon nanotubes, both single- and multi-walled, feature many superior properties which offer excellent opportunities for various modern applications ranging from nanoelectronics, supercapacitors, photovoltaic cells, energy storage and conversation devices, to gas- and biosensors, nanomechanical and biomedical devices etc. At present, arrays and networks of carbon nanotubes are mainly fabricated from the pre-fabricated separated nanotubes by solution-based techniques. However, the intrinsic structure of the nanotubes (mainly, the level of the structural defects) which are required for the best performance in the nanotube-based applications, are often damaged during the array/network fabrication by surfactants, chemicals, and sonication involved in the process. As a result, the performance of the functional devices may be significantly degraded. In contrast, directly synthesized nanotube arrays/networks can preclude the adverse effects of the solution-based process and largely preserve the excellent properties of the pristine nanotubes. Owing to its advantages of scale-up production and precise positioning of the grown nanotubes, catalytic and catalyst-free chemical vapor depositions (CVD), as well as plasma-enhanced chemical vapor deposition (PECVD) are the methods most promising for the direct synthesis of the nanotubes.
Resumo:
We present a theoretical model describing a plasma-assisted growth of carbon nanofibers (CNFs), which involves two competing channels of carbon incorporation into stacked graphene sheets: via surface diffusion and through the bulk of the catalyst particle (on the top of the nanofiber), accounting for a range of ion- and radical-assisted processes on the catalyst surface. Using this model, it is found that at low surface temperatures, Ts, the CNF growth is indeed controlled by surface diffusion, thus quantifying the semiempirical conclusions of earlier experiments. On the other hand, both the surface and bulk diffusion channels provide a comparable supply of carbon atoms to the stacked graphene sheets at elevated synthesis temperatures. It is also shown that at low Ts, insufficient for effective catalytic precursor decomposition, the plasma ions play a key role in the production of carbon atoms on the catalyst surface. The model is used to compute the growth rates for the two extreme cases of thermal and plasma-enhanced chemical vapor deposition of CNFs. More importantly, these results quantify and explain a number of observations and semiempirical conclusions of earlier experiments.
Resumo:
Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.
Resumo:
A simple, fast and low-cost atmospheric-pressure chemical vapor deposition technique is developed to synthesize high-yield carbon nanocoils (CNCs) using amorphous Co–P alloy as catalyst and thiophene as nucleation agent. The uniform catalyst pattern with the mean particle size of 350 nm was synthesized using a simple electroless plating process. This uniformity of the Co–P nanoparticles results in a high yield, very uniform size/shape distribution and regular structure of CNCs at the optimum growth temperature of 800 ◦C. The yield of CNCs reaches ∼76%; 70% of the CNCs have fiber diameters approximately 250 nm. The CNC coil diameters and lengths are 450–550nm and 0.5–2mm, respectively. The CNC nucleation and growth mechanism are also discussed.
Resumo:
The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.
Resumo:
The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.
Resumo:
The contamination of electrical insulators is one of the major contributors to the risk of operation outages in electrical substations, especially in coastal zones with high salinity levels and atmospheric pollution. By using the measurement of leakage-currents, which is one of the main indicators of contamination in insulators, this work seeks to the determine the correlation with climatic variables, such as ambient temperature, relative humidity, solar irradiance, atmospheric pressure, and wind speed and direction. The results obtained provide an input to the behaviour of the leakage current under atmospheric conditions that are particular to the Caribbean coast of Colombia. Spearman’s rank correlation coefficients and principal component analysis are utilised to determine the significant relationships among the different variables under consideration. The necessary information for the study was obtained via historical databases of both atmospheric variables and the leakage current measured in over a period of one year in a 220-kV potential transformer insulator. We identified the influencing factors of temperature, humidity, radiation, wind speed and direction on the magnitude of the leakage current as the most relevant.
Resumo:
Recent discussions of energy security and climate change have attracted significant attention to clean energy. We hypothesize that rising prices of conventional energy and/or placement of a price on carbon emissions would encourage investments in clean energy firms. The data from three clean energy indices show that oil prices and technology stock prices separately affect the stock prices of clean energy firms. However, the data fail to demonstrate a significant relationship between carbon prices and the stock prices of the firms.
Resumo:
Considerable discussion has taken place during the last decade regarding the role of economic growth in determining environmental quality. Using data from 30 OECD countries for the period 1960-2003 and the nonparametric method of generalized additive models, which enables us to use flexible functional forms, this paper examines the environmental Kuznets curve hypothesis for carbon dioxide (CO2). We find that the reduction of coal share in energy use has a significant effect on CO2. Our results imply that economic growth is not sufficient to decrease CO2 emissions.
Resumo:
We propose a productivity index for undesirable outputs such as carbon dioxide (CO2) and sulfur dioxide (SO2) emissions and measure it using data from 51 developed and developing countries over the period 1971-2000. About half of the countries exhibit the productivity growth. The changes in the productivity index are linked with their respective per capita income using a semi-parametric model. Our results show technological catch up of low-income countries. However, overall productivities both of SO2 and CO2 show somewhat different results.
Resumo:
The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.
Resumo:
Synthesis of high quality boron carbide (B4C) powder is achieved by carbothermal reduction of boron oxide (B2O3) from a condensed boric acid (H3BO3) / polyvinyl acetate (PVAc) product. Precursor solutions are prepared via polymerisation of vinyl acetate (VA) in methanol in the presence of dissolved H3BO3. With excess VA monomer being removed during evaporation of the solvent, the polymerisation time is then used to manage availability of carbon for reaction.
Resumo:
An increasing concern over the sustainability credentials of food and fiber crops require that farmers and their supply chain partners have access to appropriate and industry-friendly tools to be able to measure and improve the outcomes. This article focuses on one of the sustainability indicators, namely, greenhouse gas (GHG) emissions, and nine internationally accredited carbon footprint calculators were identified and compared on an outcomes basis against the same cropping data from a case study cotton farm. The purpose of this article is to identify the most “appropriate” methodology to be applied by cotton suppliers in this regard. From the analysis of the results, we subsequently propose a new integrated model as the basis for an internationally accredited carbon footprint tool for cotton and show how the model can be applied to evaluate the emission outcomes of different farming practices.