395 resultados para Binary Image Representation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years there has been a noticeable move by various public institutions, such as public service broadcasters and community media organisations, to capture and disseminate the voices and viewpoints of ‘ordinary people’ through inviting them to share stories about their lives. One of the foremost objectives of many such projects is to provide under-represented individuals and groups with an opportunity to express and represent themselves; as such, the capture and broadcast of ‘authentic voices’ is a central value. This paper discusses the notion of ‘authentic voice’, and questions the framing role of public media organisations in storytelling projects that aim to provide individuals with space for self-expression and self-representation. It considers the ways in which tensions arise on multiple levels when individuals are asked to express and represent themselves within projects and spaces that are managed by institutions. This paper begins by discussing the challenges and opportunities that arise within storytelling projects that are facilitated by public institutions and community media arts organisations, and that aim to amplify the voices of “ordinary people” (Thumim, 2009). It examines ways in which ‘voice’ is facilitated, curated, broadcast and distributed within such projects, particularly questioning the ways in which project facilitation and the curation of stories for public broadcast can both help and hinder the amplification of ‘authentic voice’. Furthermore, we seek to discuss how ‘authentic voice’ is defined, and what is involved in the process of amplification. The paper moves on to discuss a case study in order to demonstrate some of the tensions that are evident within a storytelling project that is managed by a public institution – Australia’s national broadcaster – and the ways these tensions impact upon the capture and broadcast of an ‘authentic voice’ for project participants. The Australian Broadcasting Corporation’s (ABC) ‘Heywire’ project is a storytelling competition and website that aims to ‘give voice’ to 16-22 year olds who live in rural, regional and remote parts of Australia. Looking at tensions that exist on organisational, political and philosophical levels within the Heywire project reveals a number of conflicts of interest and objectives between the institution and project participants. This leads us to question whether institutionally-managed storytelling projects can effectively support individuals to have an ‘authentic voice’, and whether struggles of aims and objectives diminish the personal benefits that people may derive from expressing and representing themselves within such projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In animal models hemi-field deprivation results in localised, graded vitreous chamber elongation and presumably deprivation induced localised changes in retinal processing. The aim of this research was to determine if there are variations in ERG responses across the retina in normal chick eyes and to examine the effect of hemi-field and full-field deprivation on ERG responses across the retina and at earlier times than have previously been examined electrophysiologically. Methods: Chicks were either untreated, wore monocular full-diffusers or half-diffusers (depriving nasal retina) (n = 6-8 each group) from day 8. mfERG responses were measured using the VERIS mfERG system across the central 18.2º× 16.7º (H × V) field. The stimulus consisted of 61 unscaled hexagons with each hexagon modulated between black and white according to a pseudorandom binary m-sequence. The mfERG was measured on day 12 in untreated chicks, following 4 days of hemi-field diffuser wear, and 2, 48 and 96 h after application of full-field diffusers. Results: The ERG response of untreated chick eyes did not vary across the measured field; there was no effect of retinal location on the N1-P1 amplitude (p = 0.108) or on P1 implicit time (p > 0.05). This finding is consistent with retinal ganglion cell density of the chick varying by only a factor of two across the entire retina. Half-diffusers produced a ramped retina and a graded effect of negative lens correction (p < 0.0001); changes in retinal processing were localized. The untreated retina showed increasing complexity of the ERG waveform with development; form-deprivation prevented the increasing complexity of the response at the 2, 48 and 96 h measurement times and produced alterations in response timing. Conclusions: Form-deprivation and its concomitant loss of image contrast and high spatial frequency images prevented development of the ERG responses, consistent with a disruption of development of retinal feedback systems. The characterisation of ERG responses in normal and deprived chick eyes across the retina allows the assessment of concurrent visual and retinal manipulations in this model. (Ophthalmic & Physiological Optics © 2013 The College of Optometrists.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microvessel density (MVD) is a widely used surrogate measure of angiogenesis in pathological specimens and tumour models. Measurement of MVD can be achieved by several methods. Automation of counting methods aims to increase the speed, reliability and reproducibility of these techniques. The image analysis system described here enables MVD measurement to be carried out with minimal expense in any reasonably equipped pathology department or laboratory. It is demonstrated that the system translates easily between tumour types which are suitably stained with minimal calibration. The aim of this paper is to offer this technique to a wider field of researchers in angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several methods for determining the proteoglycan content of cartilage in biomechanics experiments. Many of these include assay-based methods and the histochemistry or spectrophotometry protocol where quantification is biochemically determined. More recently a method based on extracting data to quantify proteoglycan content has emerged using the image processing algorithms, e.g., in ImageJ, to process histological micrographs, with advantages including time saving and low cost. However, it is unknown whether or not this image analysis method produces results that are comparable to those obtained from the biochemical methodology. This paper compares the results of a well-established chemical method to those obtained using image analysis to determine the proteoglycan content of visually normal (n=33) and their progressively degraded counterparts with the protocols. The results reveal a strong linear relationship with a regression coefficient (R2) = 0.9928, leading to the conclusion that the image analysis methodology is a viable alternative to the spectrophotometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering identities in a broadcast video is a useful task to aid in video annotation and retrieval. Quality based frame selection is a crucial task in video face clustering, to both improve the clustering performance and reduce the computational cost. We present a frame work that selects the highest quality frames available in a video to cluster the face. This frame selection technique is based on low level and high level features (face symmetry, sharpness, contrast and brightness) to select the highest quality facial images available in a face sequence for clustering. We also consider the temporal distribution of the faces to ensure that selected faces are taken at times distributed throughout the sequence. Normalized feature scores are fused and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face clustering system. We present a news video database to evaluate the clustering system performance. Experiments on the newly created news database show that the proposed method selects the best quality face images in the video sequence, resulting in improved clustering performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces improved techniques towards automatically estimating the pose of humans from video. It examines a complete workflow to estimating pose, from the segmentation of the raw video stream to extract silhouettes, to using the silhouettes in order to determine the relative orientation of parts of the human body. The proposed segmentation algorithms have improved performance and reduced complexity, while the pose estimation shows superior accuracy during difficult cases of self occlusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In outdoor environments shadows are common. These typically strong visual features cause considerable change in the appearance of a place, and therefore confound vision-based localisation approaches. In this paper we describe how to convert a colour image of the scene to a greyscale invariant image where pixel values are a function of underlying material property not lighting. We summarise the theory of shadow invariant images and discuss the modelling and calibration issues which are important for non-ideal off-the-shelf colour cameras. We evaluate the technique with a commonly used robotic camera and an autonomous car operating in an outdoor environment, and show that it can outperform the use of ordinary greyscale images for the task of visual localisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the demand for better and deeper analysis in sports, organizations (both professional teams and broadcasters) are looking to use spatiotemporal data in the form of player tracking information to obtain an advantage over their competitors. However, due to the large volume of data, its unstructured nature, and lack of associated team activity labels (e.g. strategic/tactical), effective and efficient strategies to deal with such data have yet to be deployed. A bottleneck restricting such solutions is the lack of a suitable representation (i.e. ordering of players) which is immune to the potentially infinite number of possible permutations of player orderings, in addition to the high dimensionality of temporal signal (e.g. a game of soccer last for 90 mins). Leveraging a recent method which utilizes a "role-representation", as well as a feature reduction strategy that uses a spatiotemporal bilinear basis model to form a compact spatiotemporal representation. Using this representation, we find the most likely formation patterns of a team associated with match events across nearly 14 hours of continuous player and ball tracking data in soccer. Additionally, we show that we can accurately segment a match into distinct game phases and detect highlights. (i.e. shots, corners, free-kicks, etc) completely automatically using a decision-tree formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-image descriptors such as GIST have been used successfully for persistent place recognition when combined with temporal filtering or sequential filtering techniques. However, whole-image descriptor localization systems often apply a heuristic rather than a probabilistic approach to place recognition, requiring substantial environmental-specific tuning prior to deployment. In this paper we present a novel online solution that uses statistical approaches to calculate place recognition likelihoods for whole-image descriptors, without requiring either environmental tuning or pre-training. Using a real world benchmark dataset, we show that this method creates distributions appropriate to a specific environment in an online manner. Our method performs comparably to FAB-MAP in raw place recognition performance, and integrates into a state of the art probabilistic mapping system to provide superior performance to whole-image methods that are not based on true probability distributions. The method provides a principled means for combining the powerful change-invariant properties of whole-image descriptors with probabilistic back-end mapping systems without the need for prior training or system tuning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a planetary rover to successfully traverse across unstructured terrain autonomously, one of the major challenges is to assess its local traversability such that it can plan a trajectory to achieve its mission goals efficiently while minimising risk to the vehicle itself. This paper aims to provide a comparative study on different approaches for representing the geometry of Martian terrain for the purpose of evaluating terrain traversability. An accurate representation of the geometric properties of the terrain is essential as it can directly affect the determination of traversability for a ground vehicle. We explore current state-of-the-art techniques for terrain estimation, in particular Gaussian Processes (GP) in various forms, and discuss the suitability of each technique in the context of an unstructured Martian terrain. Furthermore, we present the limitations of regression techniques in terms of spatial correlation and continuity assumptions, and the impact on traversability analysis of a planetary rover across unstructured terrain. The analysis was performed on datasets of the Mars Yard at the Powerhouse Museum in Sydney, obtained using the onboard RGB-D camera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementary functionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the literature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data: an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which influence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a difficulty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and configuration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many applications can benefit from the accurate surface temperature estimates that can be made using a passive thermal-infrared camera. However, the process of radiometric calibration which enables this can be both expensive and time consuming. An ad hoc approach for performing radiometric calibration is proposed which does not require specialized equipment and can be completed in a fraction of the time of the conventional method. The proposed approach utilizes the mechanical properties of the camera to estimate scene temperatures automatically, and uses these target temperatures to model the effect of sensor temperature on the digital output. A comparison with a conventional approach using a blackbody radiation source shows that the accuracy of the method is sufficient for many tasks requiring temperature estimation. Furthermore, a novel visualization method is proposed for displaying the radiometrically calibrated images to human operators. The representation employs an intuitive coloring scheme and allows the viewer to perceive a large variety of temperatures accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole image descriptors have recently been shown to be remarkably robust to perceptual change especially compared to local features. However, whole-image-based localization systems typically rely on heuristic methods for determining appropriate matching thresholds in a particular environment. These environment-specific tuning requirements and the lack of a meaningful interpretation of these arbitrary thresholds limits the general applicability of these systems. In this paper we present a Bayesian model of probability for whole-image descriptors that can be seamlessly integrated into localization systems designed for probabilistic visual input. We demonstrate this method using CAT-Graph, an appearance-based visual localization system originally designed for a FAB-MAP-style probabilistic input. We show that using whole-image descriptors as visual input extends CAT-Graph’s functionality to environments that experience a greater amount of perceptual change. We also present a method of estimating whole-image probability models in an online manner, removing the need for a prior training phase. We show that this online, automated training method can perform comparably to pre-trained, manually tuned local descriptor methods.