358 resultados para Artificial Information Models
Resumo:
This article studies the problem of transforming a process model with an arbitrary topology into an equivalent well-structured process model. While this problem has received significant attention, there is still no full characterization of the class of unstructured process models that can be transformed into well-structured ones, nor an automated method for structuring any process model that belongs to this class. This article fills this gap in the context of acyclic process models. The article defines a necessary and sufficient condition for an unstructured acyclic process model to have an equivalent well-structured process model under fully concurrent bisimulation, as well as a complete structuring method. The method has been implemented as a tool that takes process models captured in the BPMN and EPC notations as input. The article also reports on an empirical evaluation of the structuring method using a repository of process models from commercial practice.
Resumo:
This paper addresses the problem of joint identification of infinite-frequency added mass and fluid memory models of marine structures from finite frequency data. This problem is relevant for cases where the code used to compute the hydrodynamic coefficients of the marine structure does not give the infinite-frequency added mass. This case is typical of codes based on 2D-potential theory since most 3D-potential-theory codes solve the boundary value associated with the infinite frequency. The method proposed in this paper presents a simpler alternative approach to other methods previously presented in the literature. The advantage of the proposed method is that the same identification procedure can be used to identify the fluid-memory models with or without having access to the infinite-frequency added mass coefficient. Therefore, it provides an extension that puts the two identification problems into the same framework. The method also exploits the constraints related to relative degree and low-frequency asymptotic values of the hydrodynamic coefficients derived from the physics of the problem, which are used as prior information to refine the obtained models.
Resumo:
Determining similarity between business process models has recently gained interest in the business process management community. So far similarity was addressed separately either at semantic or structural aspect of process models. Also, most of the contributions that measure similarity of process models assume an ideal case when process models are enriched with semantics - a description of meaning of process model elements. However, in real life this results in a heavy human effort consuming pre-processing phase which is often not feasible. In this paper we propose an automated approach for querying a business process model repository for structurally and semantically relevant models. Similar to the search on the Internet, a user formulates a BPMN-Q query and as a result receives a list of process models ordered by relevance to the query. We provide a business process model search engine implementation for evaluation of the proposed approach.
Resumo:
A BPMN model is well-structured if splits and joins are always paired into single-entry-single-exit blocks. Well-structuredness is often a desirable property as it promotes readability and makes models easier to analyze. However, many process models found in practice are not well-structured, and it is not always feasible or even desirable to restrict process modelers to produce only well-structured models. Also, not all processes can be captured as well-structured process models. An alternative to forcing modelers to produce well-structured models, is to automatically transform unstructured models into well-structured ones when needed and possible. This talk reviews existing results on automatic transformation of unstructured process models into structured ones.
Resumo:
Recently, a new approach for structuring acyclic process models has been introduced. The algorithm is based on a transformation between the Refined Process Structure Tree (RPST) of a control flow graph and the Modular Decomposition Tree (MDT) of ordering relations. In this paper, an extension of the algorithm is presented that allows to partially structure process models in the case when a process model cannot be structured completely. We distinguish four different types of unstructuredness of process models and show that only two are possible in practice. For one of these two types of unstructuredness an algorithm is proposed that returns the maximally structured representation of a process model.
Resumo:
Process models specify behavioral aspects by describing ordering constraints between tasks which must be accomplished to achieve envisioned goals. Tasks usually exchange information by means of data objects, i.e., by writing information to and reading information from data objects. A data object can be characterized by its states and allowed state transitions. In this paper, we propose a notion which checks conformance of a process model with respect to data objects that its tasks access. This new notion can be used to tell whether in every execution of a process model each time a task needs to access a data object in a particular state, it is ensured that the data object is in the expected state or can reach the expected state and, hence, the process model can achieve its goals.
Resumo:
This paper addresses the problem of transforming a process model with an arbitrary topology into an equivalent well-structured process model. While this problem has received significant attention, there is still no full characterization of the class of unstructured process models that can be transformed into well-structured ones, nor an automated method to structure any process model that belongs to this class. This paper fills this gap in the context of acyclic process models. The paper defines a necessary and sufficient condition for an unstructured process model to have an equivalent structured model under fully concurrent bisimulation, as well as a complete structuring method.
Resumo:
Process models define allowed process execution scenarios. The models are usually depicted as directed graphs, with gateway nodes regulating the control flow routing logic and with edges specifying the execution order constraints between tasks. While arbitrarily structured control flow patterns in process models complicate model analysis, they also permit creativity and full expressiveness when capturing non-trivial process scenarios. This paper gives a classification of arbitrarily structured process models based on the hierarchical process model decomposition technique. We identify a structural class of models consisting of block structured patterns which, when combined, define complex execution scenarios spanning across the individual patterns. We show that complex behavior can be localized by examining structural relations of loops in hidden unstructured regions of control flow. The correctness of the behavior of process models within these regions can be validated in linear time. These observations allow us to suggest techniques for transforming hidden unstructured regions into block-structured ones.
Resumo:
Companies use business process models to represent their working procedures in order to deploy services to markets, to analyze them, and to improve upon them. Competitive markets necessitate complex procedures, which lead to large process specifications with sophisticated structures. Real world process models can often incorporate hundreds of modeling constructs. While a large degree of detail complicates the comprehension of the processes, it is essential to many analysis tasks. This paper presents a technique to abstract, i.e., to simplify process models. Given a detailed model, we introduce abstraction rules which generalize process fragments in order to bring the model to a higher abstraction level. The approach is suited for the abstraction of large process specifications in order to aid model comprehension as well as decomposing problems of process model analysis. The work is based on process structure trees that have recently been introduced to the field of business process management.
Resumo:
The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.
Resumo:
Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an ffective input for travel time prediction. In this paper, the hazard based prediction odels are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS) for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.
Resumo:
Commodity price modeling is normally approached in terms of structural time-series models, in which the different components (states) have a financial interpretation. The parameters of these models can be estimated using maximum likelihood. This approach results in a non-linear parameter estimation problem and thus a key issue is how to obtain reliable initial estimates. In this paper, we focus on the initial parameter estimation problem for the Schwartz-Smith two-factor model commonly used in asset valuation. We propose the use of a two-step method. The first step considers a univariate model based only on the spot price and uses a transfer function model to obtain initial estimates of the fundamental parameters. The second step uses the estimates obtained in the first step to initialize a re-parameterized state-space-innovations based estimator, which includes information related to future prices. The second step refines the estimates obtained in the first step and also gives estimates of the remaining parameters in the model. This paper is part tutorial in nature and gives an introduction to aspects of commodity price modeling and the associated parameter estimation problem.
Resumo:
4D modeling - the simulation and visualisation of the construction process - is now a common method used during the building construction process with reasonable support from existing software. The goal of this paper is to examine the information needs required to model the deconstruction/demolition process of a building. The motivation is the need to reduce the impacts on the local environment during the deconstruction process. The focus is on the definition and description of the activities to remove building components and on the assessment of the noise, dust and vibration implications of these activities on the surrounding environment. The outcomes of the research are: i. requirements specification for BIM models to support operational deconstruction process planning, ii. algorithms for augmenting the BIM with the derived information necessary to automate planning of the deconstruction process with respect to impacts on the surrounding environment, iii. algorithms to build naive deconstruction activity schedules.
Resumo:
This article summarizes a panel held at the 15th Pacific Asia Conference on Information Systems (PACIS) in Brisbane, Austrailia, in 2011. The panelists proposed a new research agenda for information systems success research. The DeLone and McLean IS Success Model has been one of the most influential models in Information Systems research. However, the nature of information systems continues to change. Information systems are increasingly implemented across layers of infrastructure and application architecture. The diffusion of information systems into many spheres of life means that information systems success needs to be considered in multiple contexts. Services play a much more prominent role in the economies of countries, making the “service” context of information systems increasingly important. Further, improved understandings of theory and measurement offer new opportunities for novel approaches and new research questions about information systems success.
Resumo:
Existing techniques for automated discovery of process models from event logs largely focus on extracting flat process models. In other words, they fail to exploit the notion of subprocess, as well as structured error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of BPMN models containing subprocesses, interrupting and non-interrupting boundary events, and loop and multi-instance markers. The technique analyzes dependencies between data attributes associated with events, in order to identify subprocesses and to extract their associated logs. Parent process and subprocess models are then discovered separately using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. A validation with one synthetic and two real-life logs shows that process models derived using the proposed technique are more accurate and less complex than those derived with flat process model discovery techniques.