275 resultados para Air inclusion
Resumo:
This chapter explores inclusive education as a social imaginary; that is, a common understanding that has become a global perspective. We trace the roots of inclusive education in early movements for social justice and the development of special education and note that these two domains continue to be seen in the ongoing tensions within the practice of inclusive education. We conclude that although much has been achieved in opening up greater opportunities for all children and young people to participate in and engage with education, there is still much work to be done. Creative imagining, discursive dialogue, and courageous actions in breaking down barriers in schools and communities will strengthen the local and global social imaginary of inclusive education, thus affording even greater opportunities for all children and young people regardless of any categorisation that may have been applied to their differences.
Resumo:
Methylammonium bismuth (III) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (II) and Sn (II)) for solar energy applications.
Resumo:
Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.
Resumo:
An initial call by the editors of International Research in Geographical and Environmental Education (IRGEE) prompted a study about the inclusion of geography in the Trends in International Mathematics and Science Study (TIMSS) tests. This study found that the geography education community were overwhelmingly in favour of such a move, believing that the information collected would be valuable in enhancing learning outcomes through its impact on research, policy and teaching practice (Lane & Bourke, 2016). However, a number of questions about the development and implementation of this assessment were posed. This paper addresses two of these questions: (1) What is the global geographical education community’s views about Grades 4 and 8 as target year levels for the assessment?; and, (2) What types of knowledge and cognitive dimensions would they like to see assessed? Based on these findings, the overarching key question that requires further discussion is: Can there be some degree of consensus in terms of what should be assessed and how the test should be implemented?
Resumo:
Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10-30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future.