336 resultados para system integration
Resumo:
This paper proposes a method which aims at increasing the efficiency of enterprise system implementations. First, we argue that existing process modeling languages that feature different degrees of abstraction for different user groups exist and are used for different purposes which makes it necessary to integrate them. We describe how to do this using the meta models of the involved languages. Second, we argue that an integrated process model based on the integrated meta model needs to be configurable and elaborate on the enabling mechanisms. We introduce a business example using SAP modeling techniques to illustrate the proposed method.
Resumo:
After the recent prolonged drought conditions in many parts of Australia it is increasingly recognised that many groundwater systems are under stress. Although this is obvious for systems that are utilised for intensive irrigation many other groundwater systems are also impacted.Management strategies are highly variable to non-existent. Policy and regulation are also often inadequate, and are reactive or politically driven. In addition, there is a wide range of opinion by water users and other stakeholders as to what is “reasonable”management practice. These differences are often related to the “value”that is put on the groundwater resource. Opinions vary from “our right to free water”to an awareness that without effective management the resource will be degraded. There is also often misunderstanding of surface water-groundwater linkages, recharge processes, and baseflow to drainage systems.
Resumo:
Effective management of groundwater requires stakeholders to have a realistic conceptual understanding of the groundwater systems and hydrological processes.However, groundwater data can be complex, confusing and often difficult for people to comprehend..A powerful way to communicate understanding of groundwater processes, complex subsurface geology and their relationships is through the use of visualisation techniques to create 3D conceptual groundwater models. In addition, the ability to animate, interrogate and interact with 3D models can encourage a higher level of understanding than static images alone. While there are increasing numbers of software tools available for developing and visualising groundwater conceptual models, these packages are often very expensive and are not readily accessible to majority people due to complexity. .The Groundwater Visualisation System (GVS) is a software framework that can be used to develop groundwater visualisation tools aimed specifically at non-technical computer users and those who are not groundwater domain experts. A primary aim of GVS is to provide management support for agencies, and enhancecommunity understanding.
Resumo:
Purpose: Computer vision has been widely used in the inspection of electronic components. This paper proposes a computer vision system for the automatic detection, localisation, and segmentation of solder joints on Printed Circuit Boards (PCBs) under different illumination conditions. Design/methodology/approach: An illumination normalization approach is applied to an image, which can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image the same as in the corresponding image under normal lighting conditions. Consequently special lighting and instrumental setup can be reduced in order to detect solder joints. These normalised images are insensitive to illumination variations and are used for the subsequent solder joint detection stages. In the segmentation approach, the PCB image is transformed from an RGB color space to a YIQ color space for the effective detection of solder joints from the background. Findings: The segmentation results show that the proposed approach improves the performance significantly for images under varying illumination conditions. Research limitations/implications: This paper proposes a front-end system for the automatic detection, localisation, and segmentation of solder joint defects. Further research is required to complete the full system including the classification of solder joint defects. Practical implications: The methodology presented in this paper can be an effective method to reduce cost and improve quality in production of PCBs in the manufacturing industry. Originality/value: This research proposes the automatic location, identification and segmentation of solder joints under different illumination conditions.
Resumo:
This paper presents the possibility of utilizing a current source topology instead of a voltage source as an efficient, flexible and reliable power supply for plasma applications. A buck-boost converter with a current controller has been used to transfer energy from an inductor to a plasma system. A control strategy has also been designed to satisfy all the desired purposes. The main concept behind this topology is to provide high dv/dt regardless of the switching speed of a power switch and to control the current level to properly transfer adequate energy to various plasma applications.
Resumo:
When communicating emotion in music, composers and performers encode their expressive intentions through the control of basic musical features such as: pitch, loudness, timbre, mode, and articulation. The extent to which emotion can be controlled through the systematic manipulation of these features has not been fully examined. In this paper we present CMERS, a Computational Music Emotion Rule System for the control of perceived musical emotion that modifies features at the levels of score and performance in real-time. CMERS performance was evaluated in two rounds of perceptual testing. In experiment I, 20 participants continuously rated the perceived emotion of 15 music samples generated by CMERS. Three music works, each with five emotional variations were used (normal, happy, sad, angry, and tender). The intended emotion by CMERS was correctly identified 78% of the time, with significant shifts in valence and arousal also recorded, regardless of the works’ original emotion.
Resumo:
The Howard East rural area has experienced a rapid growth of small block subdivisions and horticulture over the last 40 years, which has been based on groundwater supply. Early bores in the area provide part of the water supply for Darwin City and are maintained and monitored by NT Power & Water Corporation. The Territory government (NRETAS) has established a monitoring network, and now 48 bores are monitored. However, in the area there are over 2700 private bores that are unregulated.Although NRETAS has both FDM and FEM simulations for the region, community support for potential regulation is sought. To improve stakeholder understanding of the resource QUT was retained by the TRaCKconsortium to develop a 3D visualisation of the groundwater system.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
This article presents a survey of authorisation models and considers their ‘fitness-for-purpose’ in facilitating information sharing. Network-supported information sharing is an important technical capability that underpins collaboration in support of dynamic and unpredictable activities such as emergency response, national security, infrastructure protection, supply chain integration and emerging business models based on the concept of a ‘virtual organisation’. The article argues that present authorisation models are inflexible and poorly scalable in such dynamic environments due to their assumption that the future needs of the system can be predicted, which in turn justifies the use of persistent authorisation policies. The article outlines the motivation and requirement for a new flexible authorisation model that addresses the needs of information sharing. It proposes that a flexible and scalable authorisation model must allow an explicit specification of the objectives of the system and access decisions must be made based on a late trade-off analysis between these explicit objectives. A research agenda for the proposed Objective-based Access Control concept is presented.
Resumo:
In a power network, when a propagation energy wave caused by a disturbance hits a weak link, a reflection is appeared and some of energy is transferred across the link. In this work, an analytical descriptive methodology is proposed to study the dynamical stability of a large scale power system. For this purpose, the measured electrical indices (angle, or voltage/frequency) following a fault in different points among the network are used, and the behaviors of the propagated waves through the lines, nodes and buses are studied. This work addresses a new tool for power system stability analysis based on a descriptive study of electrical measurements. The proposed methodology is also useful to detect the contingency condition and synthesis of an effective emergency control scheme.
Resumo:
Fire design is an essential element of the overall design procedure of structural steel members and systems. Conventionally the fire rating of load-bearing stud wall systems made of light gauge steel frames (LSF) is based on approximate prescriptive methods developed on the basis of limited fire tests. This design is limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to the stud walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these light gauge steel stud wall systems. Hence a detailed fire research study into the performance and effectiveness of a recently developed innovative composite panel wall system was undertaken at Queensland University of Technology using both full scale fire tests and numerical studies. Experimental results of LSF walls using the new composite panels under axial compression load have shown the improvement in fire performance and fire resistance rating. Numerical analyses are currently being undertaken using the finite element program ABAQUS. Measured temperature profiles of the studs are used in the numerical models and the results are used to calibrate against full scale test results. The validated model will be used in a detailed parametric study with an aim to develop suitable design rules within the current cold-formed steel structures and fire design standards. This paper will present the results of experimental and numerical investigations into the structural and fire behaviour of light gauge steel stud walls protected by the new composite panel. It will demonstrate the improvements provided by the new composite panel system in comparison to traditional wall systems.
Resumo:
This paper has two main sections, the first of which presents a summarized review of the literature concerning previous studies on the implementation of ISO 9000 quality management systems (QMSs) both in global construction companies as well as in Indonesian construction firms, and the perceived correlation between organisational culture and QMS practices in the construction sector. The first section of the paper contributes to the development of the second section, which presents details of the research project being undertaken. Based on the fundamental questions that led to the development of the main research objectives, suitable research methods have been developed in order to meet these objectives. Primary data will be collected by use of a mixed methods approach, i.e., questionnaire surveys and focus group discussions/interviews in order to obtain opinions from respondents drawn from targeted ISO construction firms. Most of the data expected to be obtained will be in future be analyzed using statistical software then the findings will be discussed in order to ultimately develop a culture-based QMS framework.
Resumo:
We propose to design a Custom Learning System that responds to the unique needs and potentials of individual students, regardless of their location, abilities, attitudes, and circumstances. This project is intentionally provocative and future-looking but it is not unrealistic or unfeasible. We propose that by combining complex learning databases with a learner’s personal data, we could provide all students with a personal, customizable, and flexible education. This paper presents the initial research undertaken for this project of which the main challenges were to broadly map the complex web of data available, to identify what logic models are required to make the data meaningful for learning, and to translate this knowledge into simple and easy-to-use interfaces. The ultimate outcome of this research will be a series of candidate user interfaces and a broad system logic model for a new smart system for personalized learning. This project is student-centered, not techno-centric, aiming to deliver innovative solutions for learners and schools. It is deliberately future-looking, allowing us to ask questions that take us beyond the limitations of today to motivate new demands on technology.
Resumo:
Background: In order to design appropriate environments for performance and learning of movement skills, physical educators need a sound theoretical model of the learner and of processes of learning. In physical education, this type of modelling informs the organization of learning environments and effective and efficient use of practice time. An emerging theoretical framework in motor learning, relevant to physical education, advocates a constraints-led perspective for acquisition of movement skills and game play knowledge. This framework shows how physical educators could use task, performer and environmental constraints to channel acquisition of movement skills and decision making behaviours in learners. From this viewpoint, learners generate specific movement solutions to satisfy the unique combination of constraints imposed on them, a process which can be harnessed during physical education lessons. Purpose: In this paper the aim is to provide an overview of the motor learning approach emanating from the constraints-led perspective, and examine how it can substantiate a platform for a new pedagogical framework in physical education: nonlinear pedagogy. We aim to demonstrate that it is only through theoretically valid and objective empirical work of an applied nature that a conceptually sound nonlinear pedagogy model can continue to evolve and support research in physical education. We present some important implications for designing practices in games lessons, showing how a constraints-led perspective on motor learning could assist physical educators in understanding how to structure learning experiences for learners at different stages, with specific focus on understanding the design of games teaching programmes in physical education, using exemplars from Rugby Union and Cricket. Findings: Research evidence from recent studies examining movement models demonstrates that physical education teachers need a strong understanding of sport performance so that task constraints can be manipulated so that information-movement couplings are maintained in a learning environment that is representative of real performance situations. Physical educators should also understand that movement variability may not necessarily be detrimental to learning and could be an important phenomenon prior to the acquisition of a stable and functional movement pattern. We highlight how the nonlinear pedagogical approach is student-centred and empowers individuals to become active learners via a more hands-off approach to learning. Summary: A constraints-based perspective has the potential to provide physical educators with a framework for understanding how performer, task and environmental constraints shape each individual‟s physical education. Understanding the underlying neurobiological processes present in a constraints-led perspective to skill acquisition and game play can raise awareness of physical educators that teaching is a dynamic 'art' interwoven with the 'science' of motor learning theories.
The experience of China-educated nurses working in Australia : a symbolic interactionist perspective
Resumo:
Transnational nurse migration is a growing phenomenon. However, relatively little is known about the experiences of immigrant nurses and particularly about non-English speaking background nurses who work in more economically developed countries. Informed by a symbolic interactionist framework, this research explored the experience of China-educated nurses working in the Australian health care system. Using a modified constructivist grounded theory method, the main source of data were 46 face to face in-depth interviews with 28 China-educated nurses in two major cities in Australia. The key findings of this research are fourfold. First, the core category developed in this study is reconciling different realities, which inserts a theoretical understanding beyond the concepts of acculturation, assimilation, and integration. Second, in contrast to the dominant discourse which reduces the experience of immigrant nurses to language and culture, this research concludes that it was not just about language and nor was it simply about culture. Third, rather than focus on the negative aspects of difference as in the immigration literature and in the practice of nursing, this research points to the importance of recognising the social value of difference. Finally, the prevailing view that the experience of immigrant nurses is largely negative belies its complexities. This research concludes that it is naïve to define the experience as either good or bad. Rather, ambivalence was the essential feature of the experience and a more appropriate theoretical concept. This research produced a theoretical understanding of the experience of China-educated nurses working in Australia. The findings may not only inform Chinese nurses who wish to immigrate but also contribute to the implementation of more effective support services for immigrant nurses in Australian health care organisations.