264 resultados para structural
Resumo:
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight ‘twist’ rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.
Resumo:
Resurrection plants can withstand extreme dehydration to an air-dry state and then recover upon receiving water. Tripogon loliiformis (F.Muell.) C.E.Hubb. is a largely uncharacterised native Australian desiccation-tolerant grass that resurrects from the desiccated state within 72 h. Using a combination of structural and physiological techniques the structural and physiological features that enable T. loliiformis to tolerate desiccation were investigated. These features include: - (i) a myriad of structural changes such as leaf folding, cell wall folding and vacuole fragmentation that mitigate desiccation stress; - (ii) potential role of sclerenchymatous tissue within leaf folding and radiation protection; - (iii) retention of ~70% chlorophyll in the desiccated state; - (iv) early response of photosynthesis to dehydration by 50% reduction and ceasing completely at 80 and 70% relative water content, respectively; - (v) a sharp increase in electrolyte leakage during dehydration, and; - (vi) confirmation of membrane integrity throughout desiccation and rehydration. Taken together, these results demonstrate that T. loliiformis implements a range of structural and physiological mechanisms that minimise mechanical, oxidative and irradiation stress. These results provide powerful insights into tolerance mechanisms for potential utilisation in the enhancement of stress-tolerance in crop plants.
Resumo:
This thesis details a Miocene aged sedimentary rock formation located in north island New Zealand. Mapping, stratigraphic logging and petrographic analysis of the rock formation ascertained that it was deposited in a deep-marine, tectonically active region. The work details the make-up of the sedimentary rocks using geochemistry and microscopy to define their origin. This definition was used to interpret the depositional model of the sediments detailing how they were transported and how they were emplaced.
Resumo:
One-dimensional nanomaterials have short Li+ diffusion paths and promising structural stability, which results in a long cycle life during Li+ insertion and extraction processes in lithium rechargeable batteries. In this study, we fabricated one-dimensional spinel Li 4Ti5O12 (LTO) nanofibers using an electrospinning technique and studied the Zr4+ doping effect on the lattice, electronic structure, and resultant electrochemical properties of Li-ion batteries (LIBs). Accommodating a small fraction of Zr4+ ions in the Ti4+ sites of the LTO structure gave rise to enhanced LIB performance, which was due to structural distortion through an increase in the average lattice constant and thereby enlarged Li+ diffusion paths rather than changes to the electronic structure. Insulating ZrO2 nanoparticles present between the LTO grains due to the low Zr4+ solubility had a negative effect on the Li+ extraction capacity, however. These results could provide key design elements for LTO anodes based on atomic level insights that can pave the way to an optimal protocol to achieve particular functionalities. Distorted lattice: Zr4+ is doped into a 1 D spinel Li4Ti5O12 (LTO) nanostructure and the resulting electrochemical properties are explored through a combined theoretical and experimental investigation. The improved electrochemical performance resulting from incorporation of Zr4+ in the LTO is due to lattice distortion and, thereby, enlarged Li+ diffusion paths rather than to a change in the electronic structure.
Genetic analysis of structural brain connectivity using DICCCOL models of diffusion MRI in 522 twins
Resumo:
Genetic and environmental factors affect white matter connectivity in the normal brain, and they also influence diseases in which brain connectivity is altered. Little is known about genetic influences on brain connectivity, despite wide variations in the brain's neural pathways. Here we applied the 'DICCCOL' framework to analyze structural connectivity, in 261 twin pairs (522 participants, mean age: 21.8 y ± 2.7SD). We encoded connectivity patterns by projecting the white matter (WM) bundles of all 'DICCCOLs' as a tracemap (TM). Next we fitted an A/C/E structural equation model to estimate additive genetic (A), common environmental (C), and unique environmental/error (E) components of the observed variations in brain connectivity. We found 44 'heritable DICCCOLs' whose connectivity was genetically influenced (α2>1%); half of them showed significant heritability (α2>20%). Our analysis of genetic influences on WM structural connectivity suggests high heritability for some WM projection patterns, yielding new targets for genome-wide association studies.
Resumo:
Nanoconfined synthesized crystalline fullerene mesoporous carbon (C60-FMC) with bimodal pore architectures of 4.95 nm and 10-15 nm pore sizes characterized by XRD, TEM, nitrogen adsorption/ desorption isotherm and solid-state NMR, and the material was used for protein immobilization. The solid-state 13C NMR spectrum of C60-FMC along with XRD, BET and TEM confirms the formation of fullerene mesoporous carbon structure C60-FMC. The immobilization of albumin (from bovine serum, BSA) protein biomolecule in a buffer solution at pH 4.7 was used to determine the adsorption properties of the C60-FMC material and its structural changes investigated by FT-IR. We demonstrated that the C60-FMC with high surface area and pore volumes have excellent adsorption capacity towards BSA protein molecule. Protein adsorption experiments clearly showed that the C60-FMC with bimodal pore architectures (4.95 nm and 10-15 nm) are suitable material to be used for protein adsorption
Resumo:
The assembly of influenza A virus at the plasma membrane of infected cells leads to release of enveloped virions that are typically round in tissue culture-adapted strains but filamentous in strains isolated from patients. The viral proteins hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and M2 ion channel all contribute to virus assembly. When expressed individually or in combination in cells, they can all, under certain conditions, mediate release of membrane-enveloped particles, but their relative roles in virus assembly, release, and morphology remain unclear. To investigate these roles, we produced membrane-enveloped particles by plasmid-derived expression of combinations of HA, NA, and M proteins (M1 and M2) or by infection with influenza A virus. We monitored particle release, particle morphology, and plasma membrane morphology by using biochemical methods, electron microscopy, electron tomography, and cryo-electron tomography. Our data suggest that HA, NA, or HANA (HA plus NA) expression leads to particle release through nonspecific induction of membrane curvature. In contrast, coexpression with the M proteins clusters the glycoproteins into filamentous membrane protrusions, which can be released as particles by formation of a constricted neck at the base. HA and NA are preferentially distributed to differently curved membranes within these particles. Both the budding intermediates and the released particles are morphologically similar to those produced during infection with influenza A virus. Together, our data provide new insights into influenza virus assembly and show that the M segment together with either of the glycoproteins is the minimal requirement to assemble and release membrane-enveloped particles that are truly virus-like.
Resumo:
WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.
Resumo:
Learning in older age is associated with a wide range of benefits including increases in skills, social interactions, self-satisfaction, coping ability, enjoyment, and resilience to age-related changes in the brain. It is also recognized as being a fundamental component of active ageing and if active ageing objectives are to be met for the growing ageing population, barriers to learning for this group need to be fully understood so that they can be properly addressed. This paper reports on findings from a study aimed at determining the degree that structural factors deter older people aged 55 years and older from engaging in learning activities relative to other factors, based on survey (n=421) and interview (n=40) data. Quantitative and qualitative analyses revealed that factors related to educational institutions as well as infrastructure were commonly cited as barriers to participation in learning. The implications of these and other findings are discussed.