774 resultados para rural Indigenous Australians


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indigenous men’s support groups are designed to empower men to take greater control and responsibility for their health and wellbeing. They provide health education sessions, counselling, men’s health clinics, diversionary programs for men facing criminal charges, cultural activities, drug- and alcohol-free social events, and advocacy for resources. Despite there being ~100 such groups across Australia, there is a dearth of literature on their strategies and outcomes. This paper is based on participatory action research involving two north Queensland groups which were the subject of a series of five ‘phased’ evaluative reports between 2002 and 2007. By applying ‘meta-ethnography’ to the five studies, we identified four themes which provide new interpretations of the data. Self-reported benefits included improved social and emotional wellbeing, modest lifestyle modifications and willingness to change current notions of ‘gendered’ roles within the home, such as sharing housework. Our qualitative research to date suggests that through promoting empowerment, wellbeing and social cohesion for men and their families, men’s support groups may be saving costs through reduced expenditure on health care, welfare, and criminal justice costs, and higher earnings. Future research needs to demonstrate this empirically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.