297 resultados para matching
Resumo:
Reduced mismatch negativity (MMN) in response to auditory change is a well-established finding in schizophrenia and has been shown to be correlated with impaired daily functioning, rather than with hallmark signs and symptoms of the disorder. In this study, we investigated (1) whether the relationship between reduced MMN and impaired daily functioning is mediated by cortical volume loss in temporal and frontal brain regions in schizophrenia and (2) whether this relationship varies with the type of auditory deviant generating MMN. MMN in response to duration, frequency, and intensity deviants was recorded from 18 schizophrenia subjects and 18 pairwise age- and gender-matched healthy subjects. Patients’ levels of global functioning were rated on the Social and Occupational Functioning Assessment Scale. High-resolution structural magnetic resonance scans were acquired to generate average cerebral cortex and temporal lobe models using cortical pattern matching. This technique allows accurate statistical comparison and averaging of cortical measures across subjects, despite wide variations in gyral patterns. MMN amplitude was reduced in schizophrenia patients and correlated with their impaired day-to-day function level. Only in patients, bilateral gray matter reduction in Heschl’s gyrus, as well as motor and executive regions of the frontal cortex, correlated with reduced MMN amplitude in response to frequency deviants, while reduced gray matter in right Heschl’s gyrus also correlated with reduced MMN to duration deviants. Our findings further support the importance of MMN reduction in schizophrenia by linking frontotemporal cerebral gray matter pathology to an automatically generated event-related potential index of daily functioning.
Resumo:
Vision-based place recognition involves recognising familiar places despite changes in environmental conditions or camera viewpoint (pose). Existing training-free methods exhibit excellent invariance to either of these challenges, but not both simultaneously. In this paper, we present a technique for condition-invariant place recognition across large lateral platform pose variance for vehicles or robots travelling along routes. Our approach combines sideways facing cameras with a new multi-scale image comparison technique that generates synthetic views for input into the condition-invariant Sequence Matching Across Route Traversals (SMART) algorithm. We evaluate the system’s performance on multi-lane roads in two different environments across day-night cycles. In the extreme case of day-night place recognition across the entire width of a four-lane-plus-median-strip highway, we demonstrate performance of up to 44% recall at 100% precision, where current state-of-the-art fails.
Resumo:
We compare three alternative methods for eliciting retrospective confidence in the context of a simple perceptual task: the Simple Confidence Rating (a direct report on a numerical scale), the Quadratic Scoring Rule (a post-wagering procedure), and the Matching Probability (MP; a generalization of the no-loss gambling method). We systematically compare the results obtained with these three rules to the theoretical confidence levels that can be inferred from performance in the perceptual task using Signal Detection Theory (SDT). We find that the MP provides better results in that respect. We conclude that MP is particularly well suited for studies of confidence that use SDT as a theoretical framework.
Resumo:
The nature of the transport system contributes to public health outcomes in a range of ways. The clearest contribution to public health is in the area of traffic crashes, because of their direct impact on individual death and disability and their direct costs to the health system. Other papers in this conference address these issues. This paper outlines some collaborative research between the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) at QUT and Chinese researchers in areas that have indirect health impacts. Heavy vehicle dynamics: The integrity of the road surface influences crash risk, with ruts, pot-holes and other forms of road damage contributing to increased crash risks. The great majority of damage to the road surface from vehicles is caused by heavy trucks and buses, rather than cars or smaller vehicles. In some cases this damage is due to deliberate overloading, but in other cases it is due to vehicle suspension characteristics that lead to occasional high loads on particular wheels. Together with a visiting researcher and his colleagues, we have used both Queensland and Chinese data to model vehicle suspension systems that reduce the level of load, and hence the level of road damage and resulting crash risk(1-5). Toll worker exposure to vehicle emissions: The increasing construction of highways in China has also involved construction of a large number of toll roads. Tollbooth workers are potentially exposed to high levels of pollutants from vehicles, however the extent of this exposure and how it relates to standards for exposure are not well known. In a study led by a visiting researcher, we conducted a study to model these levels of exposure for a tollbooth in China(6). Noise pollution: The increasing presence of high speed roads in China has contributed to an increase in noise levels. In this collaborative study we modelled noise levels associated with a freeway widening near a university campus, and measures to reduce the noise(7). Along with these areas of research, there are many other areas of transport with health implications that are worthy of exploration. Traffic, noise and pollution contribute to a difficult environment for pedestrians, especially in an ageing society where there are health benefits to increasing physical activity. By building on collaborations such as those outlined, there is potential for a contribution to improved public health by addressing transport issues such as vehicle factors and pollution, and extending the research to other areas of travel activity. 1. Chen, Y., He, J., King, M., Chen, W. and Zhang, W. (2014). Stiffness-damping matching method of an ECAS system based on LQG control. Journal of Central South University, 21:439-446. DOI: 10.1007/s1177101419579 2. Chen, Y., He, J., King, M., Feng, Z. and Chang, W. (2013). Comparison of two suspension control strategies for multi-axle heavy truck. Journal of Central South University, 20(2): 550-562. 3. Chen, Y., He, J., King, M., Chen, W. and Zhang, W. (2013). Effect of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions. Science China Technological Sciences, 56(3): 666-676. DOI: 10.1007/s11431-012-5091-3 4. Chen, Y., He., J., King, M., Chen, W. and Zhang, W. (2013). Model development and dynamic load-sharing analysis of longitudinal-connected air suspensions. Strojniški Vestnik - Journal of Mechanical Engineering, 59(1):14-24. 5. Chen, Y., He, J., King, M., Liu, H. and Zhang, W. (2013). Dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. Proceedings of Transportation Research Board Annual Conference, Washington DC, 13-17 January 2013, paper no. 13-1117. 6. He, J., Qi, Z., Hang, W., King, M., and Zhao, C. (2011). Numerical evaluation of pollutant dispersion at a toll plaza based on system dynamics and Computational Fluid Dynamics models. Transportation Research Part C, 19(2011):510-520. 7. Zhang, C., He, J., Wang, Z., Yin, R. and King, M. (2013). Assessment of traffic noise level before and after freeway widening using traffic microsimulation and a refined classic noise prediction method. Proceedings of Transportation Research Board Annual Conference, Washington DC, 13-17 January 2013, paper no. 13-2016.
Resumo:
Non-rigid image registration is an essential tool required for overcoming the inherent local anatomical variations that exist between images acquired from different individuals or atlases. Furthermore, certain applications require this type of registration to operate across images acquired from different imaging modalities. One popular local approach for estimating this registration is a block matching procedure utilising the mutual information criterion. However, previous block matching procedures generate a sparse deformation field containing displacement estimates at uniformly spaced locations. This neglects to make use of the evidence that block matching results are dependent on the amount of local information content. This paper presents a solution to this drawback by proposing the use of a Reversible Jump Markov Chain Monte Carlo statistical procedure to optimally select grid points of interest. Three different methods are then compared to propagate the estimated sparse deformation field to the entire image including a thin-plate spline warp, Gaussian convolution, and a hybrid fluid technique. Results show that non-rigid registration can be improved by using the proposed algorithm to optimally select grid points of interest.
Resumo:
100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.
Resumo:
Functional MRI studies commonly refer to activation patterns as being localized in specific Brodmann areas, referring to Brodmann’s divisions of the human cortex based on cytoarchitectonic boundaries [3]. Typically, Brodmann areas that match regions in the group averaged functional maps are estimated by eye, leading to inaccurate parcellations and significant error. To avoid this limitation, we developed a method using high-dimensional nonlinear registration to project the Brodmann areas onto individual 3D co-registered structural and functional MRI datasets, using an elastic deformation vector field in the cortical parameter space. Based on a sulcal pattern matching approach [11], an N=27 scan single subject atlas (the Colin Holmes atlas [15]) with associated Brodmann areas labeled on its surface, was deformed to match 3D cortical surface models generated from individual subjects’ structural MRIs (sMRIs). The deformed Brodmann areas were used to quantify and localize functional MRI (fMRI) BOLD activation during the performance of the Tower of London task [7].
Resumo:
Distance education has gone through rapid expansion over the years. Many Australian universities are pushing the use of distance education in delivering construction education programs. However, the critical success factors (CSFs) in distance learning construction programs (DLCPs) are not fully understood. More importantly, students’ demographic features may affect the selection of distance education technologies. Situation-matching strategies should therefore be taken by universities or institutions with different student cohorts. A survey is adopted in Central Queensland University (CQU) to identify and rank the critical success factors in a DLCP in Australia where there is a significant number of earner-learners and students with low socioeconomic background. The findings suggest that the most important CSFs include access to computers and internet, reliability of web-based learning sites, high relevance and clarity of learning materials and assessment items, the availability of web-based learning sites that can be easily manipulated, and the capability of the instructors to provide well-structured courses. The findings also suggest that students with low socioeconomic background have more rigorous requirements on interface design, instructors’ support, and the integration of practical components into courses. The results provide good guidance of the design and delivery of DLCPs and will be useful for universities and institutions that are seeking to implement the distance mode in construction education.
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.
Resumo:
This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.
Resumo:
Given the shift toward energy efficient vehicles (EEVs) in recent years, it is important that the effects of this transition are properly examined. This paper investigates some of these effects by analyzing annual kilometers traveled (AKT) of private vehicle owners in Stockholm in 2008. The difference in emissions associated with EEV adoption is estimated, along with the effect of a congestion-pricing exemption for EEVs on vehicle usage. Propensity score matching is used to compare AKT rates of different vehicle owner groups based on the treatments of: EEV ownership and commuting across the cordon, controlling for confounding factors such as demographics. Through this procedure, rebound effects are identified, with some EEV owners found to have driven up to 12.2% further than non-EEV owners. Although some of these differences could be attributed to the congestion-pricing exemption, the results were not statistically significant. Overall, taking into account lifecycle emissions of each fuel type, average EEV emissions were 50.5% less than average non-EEV emissions, with this reduction in emissions offset by 2.0% due to rebound effects. Although it is important for policy-makers to consider the potential for unexpected negative effects in similar transitions, the overall benefit of greatly reduced emissions appears to outweigh any rebound effects present in this case study.
Resumo:
Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.
Resumo:
Completed as part of a Joint PhD program between Queensland University of Technology and the Royal Institute of Technology in Stockholm, Sweden, this thesis examines the effects of different government incentive policies on the demand, usage and pricing of energy efficient vehicles. This study outlines recommendations for policy makers aiming to increase the uptake of energy efficient vehicles. The study finds that whilst many government incentives have been successful in encouraging the uptake of energy efficient vehicles, policy makers need to both recognise and attempt to minimise the potential unintended consequences of such initiatives.
Resumo:
Place recognition has long been an incompletely solved problem in that all approaches involve significant compromises. Current methods address many but never all of the critical challenges of place recognition – viewpoint-invariance, condition-invariance and minimizing training requirements. Here we present an approach that adapts state-of-the-art object proposal techniques to identify potential landmarks within an image for place recognition. We use the astonishing power of convolutional neural network features to identify matching landmark proposals between images to perform place recognition over extreme appearance and viewpoint variations. Our system does not require any form of training, all components are generic enough to be used off-the-shelf. We present a range of challenging experiments in varied viewpoint and environmental conditions. We demonstrate superior performance to current state-of-the- art techniques. Furthermore, by building on existing and widely used recognition frameworks, this approach provides a highly compatible place recognition system with the potential for easy integration of other techniques such as object detection and semantic scene interpretation.
Resumo:
We defined a new statistical fluid registration method with Lagrangian mechanics. Although several authors have suggested that empirical statistics on brain variation should be incorporated into the registration problem, few algorithms have included this information and instead use regularizers that guarantee diffeomorphic mappings. Here we combine the advantages of a large-deformation fluid matching approach with empirical statistics on population variability in anatomy. We reformulated the Riemannian fluid algorithmdeveloped in [4], and used a Lagrangian framework to incorporate 0 th and 1st order statistics in the regularization process. 92 2D midline corpus callosum traces from a twin MRI database were fluidly registered using the non-statistical version of the algorithm (algorithm 0), giving initial vector fields and deformation tensors. Covariance matrices were computed for both distributions and incorporated either separately (algorithm 1 and algorithm 2) or together (algorithm 3) in the registration. We computed heritability maps and two vector and tensorbased distances to compare the power and the robustness of the algorithms.