574 resultados para damage detection
Resumo:
The purpose of this study was to investigate the effects of whole-body cryotherapy (WBC) on proprioceptive function, muscle force recovery following eccentric muscle contractions and tympanic temperature (TTY). Thirty-six subjects were randomly assigned to a group receiving two 3-min treatments of −110 ± 3 °C or 15 ± 3 °C. Knee joint position sense (JPS), maximal voluntary isometric contraction (MVIC) of the knee extensors, force proprioception and TTY were recorded before, immediately after the exposure and again 15 min later. A convenience sample of 18 subjects also underwent an eccentric exercise protocol on their contralateral left leg 24 h before exposure. MVIC (left knee), peak power output (PPO) during a repeated sprint on a cycle ergometer and muscles soreness were measured pre-, 24, 48 and 72 h post-treatment. WBC reduced TTY, by 0.3 °C, when compared with the control group (P<0.001). However, JPS, MVIC or force proprioception was not affected. Similarly, WBC did not effect MVIC, PPO or muscle soreness following eccentric exercise. WBC, administered 24 h after eccentric exercise, is ineffective in alleviating muscle soreness or enhancing muscle force recovery. The results of this study also indicate no increased risk of proprioceptive-related injury following WBC.
Resumo:
Appearance-based loop closure techniques, which leverage the high information content of visual images and can be used independently of pose, are now widely used in robotic applications. The current state-of-the-art in the field is Fast Appearance-Based Mapping (FAB-MAP) having been demonstrated in several seminal robotic mapping experiments. In this paper, we describe OpenFABMAP, a fully open source implementation of the original FAB-MAP algorithm. Beyond the benefits of full user access to the source code, OpenFABMAP provides a number of configurable options including rapid codebook training and interest point feature tuning. We demonstrate the performance of OpenFABMAP on a number of published datasets and demonstrate the advantages of quick algorithm customisation. We present results from OpenFABMAP’s application in a highly varied range of robotics research scenarios.
Resumo:
This paper presents an experimental investigation into the detection of excessive Diesel knock using acoustic emission signals. Three different dual-fuel Diesel engine operating regimes were induced into a compression ignition (Diesel) engine operating on both straight Diesel fuel and two different mixtures of fumigated ethanol and Diesel. The experimentally induced engine operating regimes were; normal, or Diesel only operation, acceptable dual-fuel operation and dual-fuel operation with excessive Diesel knock. During the excessive Diesel knock operating regime, high rates of ethanol substitution induced potentially damaging levels of Diesel knock. Acoustic emission data was captured along with cylinder pressure, crank-angle encoder, and top-dead centre signals for the different engine operating regimes. Using these signals, it was found that acoustic emission signals clearly distinguished between the two acceptable operating regimes and the operating regime experiencing excessive Diesel knock. It was also found that acoustic emission sensor position is critical. The acoustic emission sensor positioned on the block of the engine clearly related information concerning the level of Diesel knock occurring in the engine whist the sensor positioned on the head of the engine gave no indication concerning Diesel knock severity levels.
A tan in a test tube -in vitro models for investigating ultraviolet radiation-induced damage in skin
Resumo:
Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed.
Resumo:
This paper presents a survey of previously presented vision based aircraft detection flight test, and then presents new flight test results examining the impact of camera field-of view choice on the detection range and false alarm rate characteristics of a vision-based aircraft detection technique. Using data collected from approaching aircraft, we examine the impact of camera fieldof-view choice and confirm that, when aiming for similar levels of detection confidence, an improvement in detection range can be obtained by choosing a smaller effective field-of-view (in terms of degrees per pixel).
Resumo:
Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for non-invasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than one minute. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers and customs checkpoints.
Resumo:
Spectrum sensing is considered to be one of the most important tasks in cognitive radio. One of the common assumption among current spectrum sensing detectors is the full presence or complete absence of the primary user within the sensing period. In reality, there are many situations where the primary user signal only occupies a portion of the observed signal and the assumption of primary user duty cycle not necessarily fulfilled. In this paper we show that the true detection performance can degrade from the assumed achievable values when the observed primary user exhibits a certain duty cycle. Therefore, a two-stage detection method incorporating primary user duty cycle that enhances the detection performance is proposed. The proposed detector can improve the probability of detection under low duty cycle at the expense of a small decrease in performance at high duty cycle.
Resumo:
The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.
Resumo:
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.
Resumo:
A total histological grade does not necessarily distinguish between different manifestations of cartilage damage or degeneration. An accurate and reliable histological assessment method is required to separate normal and pathological tissue within a joint during treatment of degenerative joint conditions and to sub-classify the latter in meaningful ways. The Modified Mankin method may be adaptable for this purpose. We investigated how much detail may be lost by assigning one composite score/grade to represent different degenerative components of the osteoarthritic condition. We used four ovine injury models (sham surgery, anterior cruciate ligament/medial collateral ligament instability, simulated anatomic anterior cruciate ligament reconstruction and meniscal removal) to induce different degrees and potentially 'types' (mechanisms) of osteoarthritis. Articular cartilage was systematically harvested, prepared for histological examination and graded in a blinded fashion using a Modified Mankin grading method. Results showed that the possible permutations of cartilage damage were significant and far more varied than the current intended use that histological grading systems allow. Of 1352 cartilage specimens graded, 234 different manifestations of potential histological damage were observed across 23 potential individual grades of the Modified Mankin grading method. The results presented here show that current composite histological grading may contain additional information that could potentially discern different stages or mechanisms of cartilage damage and degeneration in a sheep model. This approach may be applicable to other grading systems.
Resumo:
Several track-before-detection approaches for image based aircraft detection have recently been examined in an important automated aircraft collision detection application. A particularly popular approach is a two stage processing paradigm which involves: a morphological spatial filter stage (which aims to emphasize the visual characteristics of targets) followed by a temporal or track filter stage (which aims to emphasize the temporal characteristics of targets). In this paper, we proposed new spot detection techniques for this two stage processing paradigm that fuse together raw and morphological images or fuse together various different morphological images (we call these approaches morphological reinforcement). On the basis of flight test data, the proposed morphological reinforcement operations are shown to offer superior signal to-noise characteristics when compared to standard spatial filter options (such as the close-minus-open and adaptive contour morphological operations). However, system operation characterised curves, which examine detection verses false alarm characteristics after both processing stages, illustrate that system performance is very data dependent.
Resumo:
The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.
Resumo:
The Black rat (Rattus rattus), a serious pest of Australian macadamia orchards has been estimated to cause up to 30% crop damage in Australian orchards. In recent years an increase in the number of commercially available cultivars has seen a change in orchard characteristics in Australia, primarily effecting fruiting and flowering patterns. This has been suggested to affect the feeding behaviour of rodents and in turn altered the damage process. In this study we compare the extent of damage in orchards containing one of three prevalent cultivars (A4/A16, A268 and HAES 344/741) and investigate the influence of these cultivars, particularly their distinctive fruiting traits, on rodent damage within the orchard. We demonstrate that the temporal pattern and extent of damage differs between cultivar types. Newer Australian macadamia cultivars tested in this study were found to be far more susceptible to rodent damage than the older Hawaiian developed cultivars, most likely due to an extended fruiting period and thinner shells. This has resulted in a more sustained period of crop damage than the patterns of crop damage observed in previous Australian studies. Crop damage caused by R. rattus is significantly higher in orchards that maintain high levels of canopy resources through the fruiting season and we postulate that this is due to the extended fruiting periods of the new cultivars used. The maintenance of canopy resource load in turn corresponds to high crop damage, in this study resulting in crop losses of up to 25%.