534 resultados para cross-head speed
Resumo:
Visuals are a central feature of STEM in all levels of education and many areas of employment. The wide variety of visuals that students are expected to master in STEM prevents an approach that aims to teach students about every type of visual that they may encounter. This paper proposes a pedagogy that can be applied across year levels and learning areas, allowing a school-wide, cross-curricular, approach to teaching about visual, that enhances learning in STEM and all other learning areas. Visuals are classified into six categories based on their properties, unlike traditional methods that classify visuals according to purpose. As visuals in the same category share common properties, students are able to transfer their knowledge from the familiar to unfamiliar in each category. The paper details the classification and proposes some strategies that can be can be incorporated into existing methods of teaching students about visuals in all learning areas. The approach may also assist students to see the connections between the different learning areas within and outside STEM.
Resumo:
Motorway off-ramps are a significant source of traffic congestion and collisions. Heavy diverging traffic to off-ramps slows down the mainline traffic speed. When the off-ramp queue spillbacks onto the mainline, it leads to a major breakdown of the motorway capacity and a significant threat to the traffic safety. This paper proposes using Variable Speed Limits (VSL) for protection of the motorway off-ramp queue and thus to promote safety in congested diverging areas. To support timely activation of VSL in advance of queue spillover, a proactive control strategy is proposed based on a real-time off-ramp queue estimation and prediction. This process determines the estimated queue size in the near-term future, on which the decision to change speed limits is made. VSL can effectively slow down traffic as it is mandatory that drivers follow the changed speed limits. A collateral benefit of VSL is its potential effect on drivers making them more attentive to the surrounding traffic conditions, and prepared for a sudden braking of the leading car. This paper analyses and quantifies these impacts and potential benefits of VSL on traffic safety and efficiency using the microsimulation approach.
Resumo:
Australia is a multi-ethnic, multi-cultural country with a long history of migration. In 2006, 22% of the population was born overseas. Thai migrants accounted for 0.2% of the population at this time, with a nearly 40% increase from around 19,000 in 1996 to 30,555 in 2006.1 Despite this, little is known about the health of this migrant group. We investigated the health status and health service utilisation of a Thai community through a cross-sectional postal survey conducted from May to September 2010. Participants were members of a Brisbane Thai temple, aged 18 years and older, who self identified as being Thai. Current health status was assessed using the SF-36v22 and self-report of diagnosed medical conditions. Use of health services was assessed using questions adapted from the Welsh Health Survey.3 Socio-demographic variables included gender, age, language spoken at home, year of arrival in Australia and type of health care insurance.
Resumo:
Objective The aim of this study was to examine the prevalence of overweight and obesity and the association with demographic, reproductive work variables in a representative cohort of working nurses and midwives. Design A cross sectional study of self reported survey data. Settings Australia, New Zealand and the United Kingdom. Methods Measurement outcomes included BMI categories, demographic (age, gender, marital status, ethnicity), reproductive (parity, number of births, mother's age at first birth, birth type and menopausal status) and workforce (registration council, employment type and principal specialty) variables. Participants 4996 respondents to the Nurses and Midwives e-Cohort study who were currently registered and working in nursing or midwifery in Australia (n=3144), New Zealand (n=778) or the United Kingdom (n=1074). Results Amongst the sample 61.87% were outside the healthy weight range and across all three jurisdictions the prevalence of obesity in nurses and midwives exceeded rates in the source populations by 1.73% up to 3.74%. Being overweight or obese was significantly associated with increasing age (35–44 yrs aOR 1.71, 95% CI 1.41–2.08; 45–55 yrs aOR 1.90, 95%CI 1.56–2.31; 55–64 aOR 2.22, 95% CI 1.71–2.88), and male gender (aOR 1.46, 95% CI 1.15–1.87). Primiparous nurses and midwives were more likely to be overweight or obese (aOR 1.37, 95% CI 1.06–1.76) as were those who had reached menopause (aOR 1.37, 95% CI 1.11–1.69). Nurses and midwives in part-time or casual employment had significantly reduced risk of being overweight or obese, (aOR 0.81, 95% CI 0.70–0.94 and aOR 0.75, 95% CI 0.59–0.96 respectively), whilst working in aged carried increased risk (aOR 1.37, 95% CI 1.04–1.80). Conclusion Nurses and midwives in this study have higher prevalence of obesity and overweight than the general population and those who are older, male, or female primiparous and menopausal have significantly higher risk of overweight or obesity as do those working fulltime, or in aged care. The consequences of overweight and obesity in this occupational group may impact on their workforce participation, their management of overweight and obese patients in their care as well as influencing their individual health behaviours and risks of occupational injury and chronic disease.
Resumo:
Laboratories and technical hands on learning have always been a part of Engineering and Science based university courses. They provide the interface where theory meets practice and students may develop professional skills through interacting with real objects in an environment that models appropriate standards and systems. Laboratories in many countries are facing challenges to their sustainable operation and effectiveness. In some countries such as Australia, significantly reduced funding and staff reduction is eroding a once strong base of technical infrastructure. Other countries such as Thailand are seeking to develop their laboratory infrastructure and are in need of staff skill development, management and staff structure in technical areas. In this paper the authors will address the need for technical development with reference to work undertaken in Thailand and Australia. The authors identify the roads which their respective university sectors are on and point out problems and opportunities. It is hoped that the cross roads where we meet will result in better directions for both.
Resumo:
Background: Optimal adherence to antiretroviral therapy (ART) is necessary for people living with HIV/AIDS (PLHIV). There have been relatively few systematic analyses of factors that promote or inhibit adherence to antiretroviral therapy among PLHIV in Asia. This study assessed ART adherence and examined factors associated with suboptimal adherence in northern Viet Nam. Methods: Data from 615 PLHIV on ART in two urban and three rural outpatient clinics were collected by medical record extraction and from patient interviews using audio computer-assisted self-interview (ACASI). Results: The prevalence of suboptimal adherence was estimated to be 24.9% via a visual analogue scale (VAS) of past-month dose-missing and 29.1% using a modified Adult AIDS Clinical Trial Group scale for on-time dose-taking in the past 4 days. Factors significantly associated with the more conservative VAS score were: depression (p < 0.001), side-effect experiences (p < 0.001), heavy alcohol use (p = 0.001), chance health locus of control (p = 0.003), low perceived quality of information from care providers (p = 0.04) and low social connectedness (p = 0.03). Illicit drug use alone was not significantly associated with suboptimal adherence, but interacted with heavy alcohol use to reduce adherence (p < 0.001). Conclusions: This is the largest survey of ART adherence yet reported from Asia and the first in a developing country to use the ACASI method in this context. The evidence strongly indicates that ART services in Viet Nam should include screening and treatment for depression, linkage with alcohol and/or drug dependence treatment, and counselling to address the belief that chance or luck determines health outcomes.
Resumo:
The increasing global distribution of automobiles necessitates that the design of In-vehicle Information Systems (IVIS) is appropriate for the regions to which they are being exported. Differences between regions such as culture, environment and traffic context can influence the needs, usability and acceptance of IVIS. This paper describes two studies aimed at identifying regional differences in IVIS design needs and preferences across drivers from Australia and China to determine the impact of any differences on IVIS design. Using a questionnaire and interaction clinics, the influence of cultural values and driving patterns on drivers' preferences for, and comprehension of, surface- and interaction-level aspects of IVIS interfaces was explored. Similarities and differences were found between the two regional groups in terms of preferences for IVIS input control types and labels and in the comprehension of IVIS functions. Specifically, Chinese drivers preferred symbols and Chinese characters over English words and were less successful (compared to Australians) at comprehending English abbreviations, particularly for complex IVIS functions. Implications in terms of the current trend to introduce Western-styled interfaces into other regions with little or no adaptation are discussed.
Resumo:
This paper addresses the problem of automatically estimating the relative pose between a push-broom LIDAR and a camera without the need for artificial calibration targets or other human intervention. Further we do not require the sensors to have an overlapping field of view, it is enough that they observe the same scene but at different times from a moving platform. Matching between sensor modalities is achieved without feature extraction. We present results from field trials which suggest that this new approach achieves an extrinsic calibration accuracy of millimeters in translation and deci-degrees in rotation.
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.
Resumo:
Introduction: Although advances in treatment modalities have improved the survival of head and neck (H&N) cancer patients over recent years, survivors’ quality of life (QoL) could be impaired for a number of reasons. The investigation of QoL determinants can inform the design of supportive interventions for this population. Objectives: To examine the QoL of H&N cancer survivors at 1 year after treatment and to identify potential determinants affecting their QoL. Methods: A systematic search of literature was done in December 2011 in five databases: Pubmed, Medline, Scopus, Sciencedirect and CINAHL, using combined search terms ‘head and neck cancer’, ‘quality of life’, ‘health-related quality of life’ and ‘systematic review’. The methodological qualities of selected studies were assessed by two reviewers using predefined criteria. The study characteristics and results were abstracted and summarized. Results: Thirty-seven studies met all inclusion criteria with methodological quality from moderate to high. The global QoL of H&N cancer survivors returned to baseline at 1 year after treatment. Significant improvement showed in emotional functioning while physical functioning, xerostomia, sticky/insufficient saliva, and fatigue were consistently worse at 12 months compared with baseline. Age, cancer sites and stages, social support, smoking, presence of feeding tube are significant QoL determinants at 12 months. Conclusions: Although the global QoL of H&N cancer survivors recover by 12 months after treatment, problems with physical functioning, fatigue, xerostomia and sticky saliva persist. Regular assessment should be carried out to monitor these problems. Further research is required to develop appropriate and effective interventions for this population.
Resumo:
Vehicle speed is an important attribute for the utility of a transport mode. The speed relationship between multiple modes of transport is of interest to the traffic planners and operators. This paper quantifies the relationship between bus speed and average car speed by integrating Bluetooth data and Transit Signal Priority data from the urban network in Brisbane, Australia. The method proposed in this paper is the first of its kind to relate bus speed and average car speed by integrating multi-source traffic data in a corridor-based method. Three transferable regression models relating not-in-service bus; in-service bus during peak; and in-service bus during off peak periods with average car are proposed. The models are cross-validated and the interrelationships are significant
Resumo:
Ramp metering is an effective motorway control tool beneficial for mainline traffic, but the long on-ramp queues created interfere with surface traffic profoundly. This study deals with the conflict between mainline benefits and thecosts of on-ramp and surface traffic. A novel local on-ramp queue management strategy with mainline speed recovery is proposed. Microscopic simulation is used to test the new strategy and compare it with other strategies. Simulation results reveal that the ramp metering with queue management strategy provides a good balance between the mainline and on-ramp performances.
Resumo:
The giant freshwater prawn (Macrobrachium rosenbergii) or GFP is one of the most important freshwater crustacean species in the inland aquaculture sector of many tropical and subtropical countries. Since the 1990’s, there has been rapid global expansion of freshwater prawn farming, especially in Asian countries, with an average annual rate of increase of 48% between 1999 and 2001 (New, 2005). In Vietnam, GFP is cultured in a variety of culture systems, typically in integrated or rotational rice-prawn culture (Phuong et al., 2006) and has become one of the most common farmed aquatic species in the country, due to its ability to grow rapidly and to attract high market price and high demand. Despite potential for expanded production, sustainability of freshwater prawn farming in the region is currently threatened by low production efficiency and vulnerability of farmed stocks to disease. Commercial large scale and small scale GFP farms in Vietnam have experienced relatively low stock productivity, large size and weight variation, a low proportion of edible meat (large head to body ratio), scarcity of good quality seed stock. The current situation highlights the need for a systematic stock improvement program for GFP in Vietnam aimed at improving economically important traits in this species. This study reports on the breeding program for fast growth employing combined (between and within) family selection in giant freshwater prawn in Vietnam. The base population was synthesized using a complete diallel cross including 9 crosses from two local stocks (DN and MK strains) and a third exotic stock (Malaysian strain - MY). In the next three selection generations, matings were conducted between genetically unrelated brood stock to produce full-sib and (paternal) half-sib families. All families were produced and reared separately until juveniles in each family were tagged as a batch using visible implant elastomer (VIE) at a body size of approximately 2 g. After tags were verified, 60 to 120 juveniles chosen randomly from each family were released into two common earthen ponds of 3,500 m2 pond for a grow-out period of 16 to 18 weeks. Selection applied at harvest on body weight was a combined (between and within) family selection approach. 81, 89, 96 and 114 families were produced for the Selection line in the F0, F1, F2 and F3 generations, respectively. In addition to the Selection line, 17 to 42 families were produced for the Control group in each generation. Results reported here are based on a data set consisting of 18,387 body and 1,730 carcass records, as well as full pedigree information collected over four generations. Variance and covariance components were estimated by restricted maximum likelihood fitting a multi-trait animal model. Experiments assessed performance of VIE tags in juvenile GFP of different size classes and individuals tagged with different numbers of tags showed that juvenile GFP at 2 g were of suitable size for VIE tags with no negative effects evident on growth or survival. Tag retention rates were above 97.8% and tag readability rates were 100% with a correct assignment rate of 95% through to mature animal size of up to 170 g. Across generations, estimates of heritability for body traits (body weight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) and carcass weight traits (abdominal weight, skeleton-off weight and telson-off weight) were moderate and ranged from 0.14 to 0.19 and 0.17 to 0.21, respectively. Body trait heritabilities estimated for females were significantly higher than for males whereas carcass weight trait heritabilities estimated for females and males were not significantly different (P > 0.05). Maternal and common environmental effects for body traits accounted for 4 to 5% of the total variance and were greater in females (7 to 10%) than in males (4 to 5%). Genetic correlations among body traits were generally high in both sexes. Genetic correlations between body and carcass weight traits were also high in the mixed sexes. Average selection response (% per generation) for body weight (transformed to square root) estimated as the difference between the Selection and the Control group was 7.4% calculated from least squares means (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favourable correlated selection responses (estimated from LSMs) were detected for other body traits (12.1%, 14.5%, 10.4%, 15.5% and 13.3% for body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width, respectively) over three selection generations. Data in the second selection generation showed positive correlated responses for carcass weight traits (8.8%, 8.6% and 8.8% for abdominal weight, skeleton-off weight and telson-off weight, respectively). Data in the third selection generation showed that heritability for body traits were moderate and ranged from 0.06 to 0.11 and 0.11 to 0.22 at weeks 10 and 18, respectively. Body trait heritabilities estimated at week 10 were not significantly lower than at week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Overall our results suggest that growth rate responds well to the application of family selection and carcass weight traits can also be improved in parallel, using this approach. Moreover, selection for high growth rate in GFP can be undertaken successfully before full market size has been reached. The outcome of this study was production of an improved culture strain of GFP for the Vietnamese culture industry that will be trialed in real farm production environments to confirm the genetic gains identified in the experimental stock improvement program.
Resumo:
Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.