547 resultados para carbon-flow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on theoretical prediction, a g-C3N4@carbon metal-free oxygen reduction reaction (ORR) electrocatalyst was designed and synthesized by uniform incorporation of g-C3N4 into a mesoporous carbon to enhance the electron transfer efficiency of g-C3N4. The resulting g-C3N4@carbon composite exhibited competitive catalytic activity (11.3 mA cm–2 kinetic-limiting current density at −0.6 V) and superior methanol tolerance compared to a commercial Pt/C catalyst. Furthermore, it demonstrated significantly higher catalytic efficiency (nearly 100% of four-electron ORR process selectivity) than a Pt/C catalyst. The proposed synthesis route is facile and low-cost, providing a feasible method for the development of highly efficient electrocatalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synergistic effect of metallic couple and carbon nanotubes on Mg results in an ultrafast kinetics of hydrogenation that overcome a critical barrier of practical use of Mg as hydrogen storage materials. The ultrafast kinetics is attributed to the metal−H atomic interaction at the Mg surface and in the bulk (energy for bonding and releasing) and atomic hydrogen diffusion along the grain boundaries (aggregation of carbon nanotubes) and inside the grains. Hence, a hydrogenation mechanism is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of bare graphene nanoribbons (GNRs) was investigated by ab initio density functional theory calculations with both the local density approximation (LDA) and the generalized gradient approximation (GGA). Remarkably, two bare 8-GNRs with zigzag-shaped edges are predicted to form an (8, 8) armchair single-wall carbon nanotube (SWCNT) without any obvious activation barrier. The formation of a (10, 0) zigzag SWCNT from two bare 10-GNRs with armchair-shaped edges has activation barriers of 0.23 and 0.61 eV for using the LDA and the revised PBE exchange correlation functional, respectively, Our results suggest a possible route to control the growth of specific types SWCNT via the interaction of GNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularise the ill-posedness arising from the viscous (Saffman-Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilising the boundary, and kinetic undercooling destabilising it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or "slit" of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilises the applicability of complex variable theory to Hele-Shaw flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In March 2008, the Australian Government announced its intention to introduce a national Emissions Trading Scheme (ETS), now expected to start in 2015. This impending development provides an ideal setting to investigate the impact an ETS in Australia will have on the market valuation of Australian Securities Exchange (ASX) firms. This is the first empirical study into the pricing effects of the ETS in Australia. Primarily, we hypothesize that firm value will be negatively related to a firm's carbon intensity profile. That is, there will be a greater impact on firm value for high carbon emitters in the period prior (2007) to the introduction of the ETS, whether for reasons relating to the existence of unbooked liabilities associated with future compliance and/or abatement costs, or for reasons relating to reduced future earnings. Using a sample of 58 Australian listed firms (constrained by the current availability of emissions data) which comprise larger, more profitable and less risky listed Australian firms, we first undertake an event study focusing on five distinct information events argued to impact the probability of the proposed ETS being enacted. Here, we find direct evidence that the capital market is indeed pricing the proposed ETS. Second, using a modified version of the Ohlson (1995) valuation model, we undertake a valuation analysis designed not only to complement the event study results, but more importantly to provide insights into the capital market's assessment of the magnitude of the economic impact of the proposed ETS as reflected in market capitalization. Here, our results show that the market assesses the most carbon intensive sample firms a market value decrement relative to other sample firms of between 7% and 10% of market capitalization. Further, based on the carbon emission profile of the sample firms we imply a ‘future carbon permit price’ of between AUD$17 per tonne and AUD$26 per tonne of carbon dioxide emitted. This study is more precise than industry reports, which set a carbon price of between AUD$15 to AUD$74 per tonne.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane gas has been identified as the most destructive greenhouse gas (Liu et al., 2004). It was reported that the global warming potential of methane per molecule relative to CO2 is approximately 23 on a 100-year timescale or 62 over a 20-year period (IPCC, 2001). Methane has high C-H bond energy of about 439 kJ/mol and other higher alkanes (or saturated hydrocarbons) also have a very strong C-C and C-H bonds, thus making their molecules to have no empty orbitals of low energy or filled orbitals of high energy that could readily participate in chemical reactions as is the case with unsaturated hydrocarbons such as olefins and alkynes (Crabtree, 1994; Labinger & Bercaw, 2002)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An emerging theme for a nation transiting into a sustainable future is the provision of a low carbon (dioxide) environment. Carbon emission reduction is therefore important for the industry and community as a whole. Buildings contribute immensely to total greenhouse gas emissions, so pragmatic actions need to be taken to cut the amount of carbon emitted by the construction industry. These typically involve strategies such as energy-saving features in the design, construction and operation of building projects. However, a variety of characteristics of the markets and stakeholders involved are suppressing their development. This paper reports on a series of interviews with a variety of Hong Kong construction project participants aimed at identifying the drivers of, and obstacles to, the construction industry's attempts to reduce carbon emissions. The results confirm the main actions currently undertaken are energy efficiency enhancement, green procurement, research and development activities, waste/water management and other technical measures such as the provision of thermal insulation. The majority of the drivers are economical in nature, suggesting that financial aids, and particularly government incentives, are likely to be useful motivators. Also suggested is the increased promotion of the benefits of environmental sustainability to the wider community, in order to alert the general public to the need for reducing the amount of carbon originating from building usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, semi-analytical expressions of the effective hydraulic conductivity ( KE) and macrodispersivity ( αE) for 3D steady-state density-dependent groundwater flow are derived using a stationary spectral method. Based on the derived expressions, we present the dependence of KE and αE on the density of fluid under different dispersivity and spatial correlation scale of hydraulic conductivity. The results show that the horizontal KE and αE are not affected by density-induced flow. However, due to gravitational instability of the fluid induced by density contrasts, both vertical KE and αE are found to be reduced slightly when the density factor ( γ ) is less than 0.01, whereas significant decreases occur when γ exceeds 0.01. Of note, the variation of KE and αE is more significant when local dispersivity is small and the correlation scale of hydraulic conductivity is large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the structural and gas sensing properties of an electropolymerized, polyaniline (PANI)/multiwall carbon nanotube (MWNT) composite based surface acoustic wave (SAW) sensor are reported. Thin films made of PANI nanofibers were deposited onto 36 lithium tantalate (LiTaO3) SAW transducers using electropolymerization and were subsequently dedoped. Scanning electron microscopy (SEM) revealed the compact growth of the composites which is much denser than that of PANI nanofibers. The PANI/MWNT composite based SAW sensor was then exposed to different concentrations of hydrogen (H2) gas at room temperature with a demonstrated electrical response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We applied a texture-based flow visualisation technique to a numerical hydrodynamic model of the Pumicestone Passage in southeast Queensland, Australia. The quality of the visualisations using our flow visualisation tool, are compared with animations generated using more traditional drogue release plot and velocity contour and vector techniques. The texture-based method is found to be far more effective in visualising advective flow within the model domain. In some instances, it also makes it easier for the researcher to identify specific hydrodynamic features within the complex flow regimes of this shallow tidal barrier estuary as compared with the direct and geometric based methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oriented graphitic nanostructured carbon film has been employed as a conductometric hydrogen gas sensor. The carbon film was energetically deposited using a filtered cathodic vacuum arc with a -75 V bias applied to a stainless steel grid placed 1cm from the surface of the Si substrate. The substrate was heated to 400°C prior to deposition. Electron microscopy showed evidence that the film consisted largely of vertically oriented graphitic sheets and had a density of 2.06 g/cm3. 76% of the atoms were bonded in sp2 or graphitic configurations. A change in the device resistance of >; 1.5% was exhibited upon exposure to 1 % hydrogen gas (in synthetic, zero humidity air) at 100°C. The time for the sensor resistance to increase by 1.5 % under these conditions was approximately 60 s and the baseline (zero hydrogen exposure) resistance remained constant to within 0.01% during and after the hydrogen exposures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically-aligned carbon nanotube (VACNT) membranes show very high permeation fluxes due to the inherent smooth and frictionless nature of the interior of the nanotubes. However, the hydrogen selectivities are all in the Knudsen range and are quite low. In this study we grew molecular sieve zeolite imidazolate frameworks (ZIFs) via secondary seeded growth on the VACNT membranes as a gas selective layer. The ZIF layer has a thickness of 5–6 μm and shows good contact with the VACNT membrane surface. The VACNT supported ZIF membrane shows much higher H2 selectivity than Ar (7.0); O2 (13.6); N2 (15.1) and CH4 (9.8). We conclude that tailoring metal–organic frameworks on the membrane surface can be an effective route to improve the gas separation performance of the VACNT membrane.