336 resultados para bearing steel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122(+) cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8(+) T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8alphaalpha and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8(+) T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-gamma and/or perforin compared with single-positive CD8(+) T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members are widely used in residential, industrial and commercial buildings as primary load-bearing elements. During fire events, they will be exposed to elevated temperatures. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the load bearing capacity of cold-formed steel members in these buildings has been affected. Hence after such fire events there is a need to evaluate the residual strength of these members. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past. This means conservative decisions are likely to be made in relation to fire exposed cold-formed steel buildings. Therefore an experimental study was undertaken to investigate the post-fire mechanical properties of cold-formed steels. Tensile coupons taken from cold-formed steel sheets of three different steel grades and thicknesses were exposed to different elevated temperatures up to 800 oC, and were then allowed to cool down to ambient temperature before they were tested to failure. Tensile coupon tests were conducted to obtain their post-fire stress-strain curves and associated mechanical properties (yield stress, Young’s modulus, ultimate strength and ductility). It was found that the post-fire mechanical properties of cold-formed steels are reduced below the original ambient temperature mechanical properties if they had been exposed to temperatures exceeding 300 oC. Hence a new set of equations is proposed to predict the post-fire mechanical properties of cold-formed steels. Such post-fire mechanical property assessments allow structural and fire engineers to make an accurate prediction of the safety of fire exposed cold-formed steel buildings. This paper presents the details of this experimental study and the results of post-fire mechanical properties of cold-formed steels. It also includes the results of a post-fire evaluation of cold-formed steel walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological modernization is widely believed to contribute positively both to economic development and to environmental and resource conservation, through improvements in productivity and strengthening of business competitiveness. However, this may not always be true, particularly in the short term, as it requires substantial investments and may impose financial burdens on firms undertaking such investments. This study empirically examines the effects of technological modernization in China's iron and steel industry in the 1990s on conventional economic productivity (CEP) and environmentally sensitive productivities (ESPs). We employ a directional distance function that can handle multiple inputs and outputs to compute relative production efficiencies. We apply these models to the data covering 27 iron and steel firms in China between 1990 and 1999-a period when the Chinese iron and steel industry modernized rapidly. We find that ESPs have continuously improved, even in the period when the CEP declined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are potential 3D alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø = 3.5 mm), cannulated TA (CTA) and cannulated SS (CSS)(Ø = 4.0 mm, Ø empty core = 2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0 mm, 2.6 mm, 1.6 mm and 2.0 mm; from 1.5T MRI they were 3.7 mm, 10.9 mm, 2.9 mm, and 9 mm; and 3T MRI they were 4.4 mm, 15.3 mm, 3.8 mm, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P < 0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P = 0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in operative techniques should be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns at ambient temperature. This research has investigated the accuracy of using current ambient temperature design rules in Australia/New Zealand (AS/NZS 4600), American (AISI S100) and European (Eurocode 3 Part 1.3) standards in determining the flexural–torsional buckling capacities of cold-formed steel columns at uniform elevated temperatures using appropriately reduced mechanical properties. It was found that these design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures. However, for fixed ended columns with warping fixity undergoing flexural–torsional buckling, the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore recommended the use of improved design rules developed for ambient temperature conditions to predict the axial compression capacities of fixed ended columns subject to flexural–torsional buckling at elevated temperatures within AS/NZS 4600 and AISI S100 design provisions. The accuracy of the proposed fire design rules was verified using finite element analysis and test results of cold-formed lipped channel columns at elevated temperatures except for low strength steel columns with intermediate slenderness whose behaviour was influenced by the increased nonlinearity in the stress–strain curves at elevated temperatures. Further research is required to include these effects within AS/NZS 4600 and AISI S100 design rules. However, Eurocode 3 Part 1.3 design rules can be used for this purpose by using suitable buckling curves as recommended in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performances under fire conditions. Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing LSF wall systems. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. This paper presents the details of an investigation into the fire performance of LSF wall panels based on an extensive finite element analysis based parametric study. The LSF wall panels with eight different plasterboard-insulation configurations were considered under standard fire conditions. Effects of varying steel grades, steel thicknesses, screw spacing, plasterboard restraint, insulation materials and load ratio on the fire performance of LSF walls were investigated and the results of extensive fire performance data are presented in the form of load ratio versus time and critical hot flange (failure) temperature curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load-bearing and non-load bearing structural elements. These buildings must be properly evaluated after a fire event to assess the nature and extent of structural damage. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the structural capacity of cold-formed steel members in these buildings has been affected. Elevated temperatures during a fire event affect the structural performance of cold-formed steel members even after cooling down to ambient temperature due to the possible detrimental changes in their mechanical properties. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past and hence there is a need to investigate the post-fire mechanical properties of cold-formed steels. Therefore an experimental study was undertaken at the Queensland University of Technology to understand the residual mechanical properties of cold-formed steels after fire events. Tensile coupon tests were conducted on three different steel grades and thicknesses to obtain their stress-strain curves and relevant mechanical properties after cooling them down from different elevated temperatures. It was found that the post-fire mechanical properties of cold-formed steels are different to the original ambient temperature mechanical properties. Hence a new set of equations is proposed to predict the reduced mechanical properties of cold-formed steels after a fire event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members are often subject to axial compression loads in a range of applications. These thin-walled members can be subject to various types of buckling modes, including flexural-torsional buckling. Design standards provide guidelines for columns subject to flexural-torsional buckling modes at ambient temperature. However, there are no specific design guidelines for elevated temperature conditions. Hence extensive research efforts have gone into the many investigations addressing the flexural-torsional buckling behaviour of cold-formed steel columns at elevated temperatures.This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current ambient temperature Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures by simply using the appropriate elevated temperature mechanical properties. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This research has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses. This paper presents the details of this research study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings will be exposed to elevated temperatures. Hence after such events there is a need to evaluate the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This means conservative decisions are often made in relation to fire exposed building structures. This research is aimed at investigating the buckling capacities of fire exposed cold-formed lipped channel steel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperatures before they were tested to failure. Similarly tensile coupon tests were also undertaken after being exposed to various elevated temperatures, from which the residual mechanical properties (yield stress and Young’s modulus) of the steels used in this study were derived. Using these mechanical properties, the residual compression capacities of tested short columns were predicted using the currently used design rules in AS/NZS 4600 and AISI cold-formed steel standards. This comparison showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of fire exposed buildings. This paper presents the details of this experimental study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings can be exposed to elevated temperatures. Hence after such events there is a need to evaluate their residual strengths. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This research is aimed at investigating the distortional buckling capacities of fire exposed cold-formed lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC, and then tested to failure after cooling down. Suitable finite element models were developed with post-fire mechanical properties to simulate the behaviour of tested columns and were validated using test results. The residual compression capacities of short columns were also predicted using the current cold-formed steel standards and compared with test and finite element analysis results. This comparison showed that ambient temperature design rules for columns can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the column can be estimated after a fire event. Such residual capacity assessments will allow engineers to evaluate the safety of fire exposed buildings. This paper presents the details of this experimental study, finite element analyses and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is one of the failure modes that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a new test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 38 tests were conducted in this research to investigate the web crippling behaviour and strength of channel beams under ETF and ITF cases. Unlipped channel sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the current design rules in AS/NZS 4600 and the AISI S100 Specification for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular structure of the copper–lead silicate mineral luddenite has been analysed using vibrational spectroscopy. The mineral is only one of many silicate minerals containing copper. The intense Raman band at 978 cm−1 is assigned to the ν1 (A1g) symmetric stretching vibration of Si5O14 units. Raman bands at 1122, 1148 and 1160 cm−1 are attributed to the ν3 SiO4 antisymmetric stretching vibrations. The bands in the 678–799 cm−1 are assigned to OSiO bending modes of the (SiO3)n chains. Raman bands at 3317 and 3329 cm−1 are attributed to water stretching bands. Bands at 3595 and 3629 cm−1 are associated with the stretching vibrations of hydroxyl units suggesting that hydroxyl units exist in the structure of luddenite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed high strength steel members are increasingly used as primary load bearing components in low rise buildings. Lipped channel beam (LCB) is one of the most commonly used flexural members in these applications. In this research an experimental study was undertaken to investigate the shear behaviour and strengths of LCB sections. Simply supported test specimens of back to back LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. The ultimate shear capacity results obtained from the tests were compared with the predictions from the current design rules in Australian/NewZealand and American cold-formed steel design standards. This comparison showed that these shear design rules are very conservative as they did not include the post-buckling strength observed in the shear tests and the higher shear buckling coefficient due to the additional fixity along the web-flange juncture. Improved shear design equations are proposed in this paper by including the above beneficial effects. Suitable lower bound design rules were also developed under the direct strength method format. This paper presents the details of this experimental study and the results including the improved design rules for the shear capacity of LCBs. It also includes the details of tests of LCBs subject to combined shear and flange distortion, and combined bending and shear actions, and proposes suitable design rules to predict the capacities in these cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear capacities are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of LCBs. Hence detailed experimental studies were undertaken to investigate the behaviour and strength of LCBs with stiffened web openings subject to shear, and combined bending and shear actions. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Numerical studies were also undertaken to investigate the strength of LCBs with stiffened web openings. Finite element models of LCBs with stiffened web openings under shear, combined bending and shear actions were developed to simulate the behaviour of tested LCBs. The developed models were then validated by comparing their results with experimental results and used in further studies. Both experimental and finite element analysis results showed that the stiffening arrangements recommended by past research and available design guidelines are not adequate to restore the original shear strengths of LCBs. Therefore new stiffener arrangements were proposed based on screw fastened plate stiffeners. This paper presents the details of this research study and the results.