262 resultados para Vehicle Ownership.
Resumo:
This paper empirically examines the effect of current tax policy on home ownership, specifically looking at how developer contributions impact house prices. Developer contributions are a commonly used mechanism for local governments to pay for new urban infrastructure. This research applies a hedonic house price model to 4,699 new and 25,053 existing house sales in Brisbane from 2005 to 2011. The findings of is research are consistent with international studies that support the proposition that developer contributions are over passed. This study has provided evidence that suggest developer contributions are over passed to both new and existing homes in the order of around 400%. These findings suggest that developer contributions are thus a significant contributor to increasing house prices, reduced housing supply and are thus an inefficient and inequitable tax. By testing this effect on both new and existing homes, this research provides evidence in support of the proposition that not only are developer contributions over passed to new home buyers but also to buyers of existing homes. Thus the price inflationary effect of these developer contributions are being felt by all home buyers across the community, resulting in increased mortgage repayments of close to $1,000 per month in Australia. This is the first study to empirically examine the impact of developer contributions on house prices in Australia. These results are important as they inform governments on the outcomes of current tax policy on home ownership, providing the first evidence of its kind in Australia. This is an important contribution to the tax reform agenda in Australia.
Resumo:
This paper presents the validation of a manoeuvring model for a novel 127m-vehicle-passenger trimaran via full scale trials. The adopted structure of the model is based on a model previously proposed in the literature with some simplifications. The structure of the model is discussed. Then initial parameter estimates are computed, and the final set of parameters are obtained via adjustments based on engineering judgement and application of a genetic algorithm so as to match the data of the trials. The validity of the model is also assessed with data from a trial different from the one use for the parameter adjustment. The model shows good agreement with the trial data.
Resumo:
Speed is recognised as a key contributor to crash likelihood and severity, and to road safety performance in general. Its fundamental role has been recognised by making Safe Speeds one of the four pillars of the Safe System. In this context, impact speeds above which humans are likely to sustain fatal injuries have been accepted as a reference in many Safe System infrastructure policy and planning discussions. To date, there have been no proposed relationships for impact speeds above which humans are likely to sustain fatal or serious (severe) injury, a more relevant Safe System measure. A research project on Safe System intersection design required a critical review of published literature on the relationship between impact speed and probability of injury. This has led to a number of questions being raised about the origins, accuracy and appropriateness of the currently accepted impact speed–fatality probability relationships (Wramborg 2005) in many policy documents. The literature review identified alternative, more recent and more precise relationships derived from the US crash reconstruction databases (NASS/CDS). The paper proposes for discussion a set of alternative relationships between vehicle impact speed and probability of MAIS3+ (fatal and serious) injury for selected common crash types. Proposed Safe System critical impact speed values are also proposed for use in road infrastructure assessment. The paper presents the methodology and assumptions used in developing these relationships. It identifies further research needed to confirm and refine these relationships. Such relationships would form valuable inputs into future road safety policies in Australia and New Zealand.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behaviour change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, this research seeks to use human factors related theories and practices to inform the design and evaluation of an in-vehicle Human Machine Interface (HMI) providing real-time driver feedback with the aim of improving both fuel efficiency and safety.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.
Resumo:
Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.
Resumo:
The test drive is a well-known step in car buying. In the emerging plug-in electric vehicle (PEV) market, however, the influence of a pre-purchase test drive on a consumer's inclination to purchase is unknown. Policy makers and industry participants both are eager to understand what factors motivate vehicle consumers at the point-of-sale. A number of researchers have used choice models to shed light on consumer perceptions of PEVs, and others have investigated consumer change in disposition toward a PEV over the course of a trial, wherein test driving a PEV may take place over a number of consecutive days, weeks or months. However, there is little written on the impact of a short-term test drive - a typical experience at dealerships or public "ride-and-drive" events. The impact of a typical test drive, often measured in minutes of driving, is not well understood. This paper first presents a synthesis of the literature on the effect of PEV test drives as they relate to consumer disposition toward PEVs. An analysis of data obtained from an Australian case study whereby attitudinal and stated preference data were collected pre- and post- test drive at public "ride-and-drive" event held Brisbane, Queensland in March 2014 using a custom-designed iPad application. Motorists' perceptions and choice preferences around PEVs were captured, revealing the relative importance of their experience behind the wheel. Using the Australian context as a case-study, this paper presents an exploratory study of consumers' stated preferences toward PEVs both before and after a short test drive.