298 resultados para Uniform state laws
Resumo:
China's market-oriented labor market reform has been in place for about one and a half decades. This study uses individual data for 1981 and 1987 to examine the success of the first half of the reform program. Success is evaluated by examining changes in the wage setting structure in the state-owned sector over the reform period. Have the market reforms stimulated worker incentives by increasing the returns to human capital acquisition? Has the wage structure altered to more closely mimic that of a market economy? In 1987, there is evidence of a structural change in the system of wage determination, with slightly increased rates of return to human capital. However, changes in industrial wage differentials appear to play the dominant role. It is argued that this may be due to labor market reforms, in particular the introduction of the profit related bonus scheme.J. Comp. Econom.,December 1997,25(3), pp. 403–421. Australian National University, Canberra, ACT0200, Australia and University of Tasmania, Hobart, Tasmania, Australia, and University of Aberdeen, Old Aberdeen, Scotland AB24 3QY.
Resumo:
In condition-based maintenance (CBM), effective diagnostic and prognostic tools are essential for maintenance engineers to identify imminent fault and predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedule of production if necessary. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of bearings based on health state probability estimation and historical knowledge embedded in the closed loop diagnostics and prognostics system. The technique uses the Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation process to provide long term prediction. To validate the feasibility of the proposed model, real life fault historical data from bearings of High Pressure-Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life (RUL). The results obtained were very encouraging and showed that the proposed prognosis system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
Fire safety design of building structures has received greater attention in recent times due to continuing losses of properties and lives in fires. However, the structural behaviour of thin-walled cold-formed steel columns under fire conditions is not well understood despite the increasing use of light gauge steels in building construction. Cold-formed steel columns are often subject to local buckling effects. Therefore a series of laboratory tests of lipped and unlipped channel columns made of varying steel thicknesses and grades was undertaken at uniform elevated temperatures up to 700°C under steady state conditions. Finite element models of the tested columns were also developed, and their elastic buckling and nonlinear analysis results were compared with test results at elevated temperatures. Effects of the degradation of mechanical properties of steel with temperature were included in the finite element analyses. The use of accurately measured yield stress, elasticity modulus and stress-strain curves at elevated temperatures provided a good comparison of the ultimate loads and load-deflection curves from tests and finite element analyses. The commonly used effective width design rules and the direct strength method at ambient temperature were then used to predict the ultimate loads at elevated temperatures by using the reduced mechanical properties. By comparing these predicted ultimate loads with those from tests and finite element analyses, the accuracy of using this design approach was evaluated.
Resumo:
Light Gauge Steel Framing (LSF) walls are made of cold-formed, thin-walled steel lipped channel studs with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. A research study using both fire tests and numerical studies was undertaken to investigate the structural and thermal behaviour of load bearing LSF walls made of both conventional and the new composite panels under standard fire conditions and to determine their fire resistance rating. This paper presents the details of finite element models of LSF wall studs developed to simulate the structural performance of LSF wall panels under standard fire conditions. Finite element analyses were conducted under both steady and transient state conditions using the time-temperature profiles measured during the fire tests. The developed models were validated using the fire test results of 11 LSF wall panels with various plasterboard/insulation configurations and load ratios. They were able to predict the fire resistance rating within five minutes. The use of accurate numerical models allowed the inclusion of various complex structural and thermal effects such as local buckling, thermal bowing and neutral axis shift that occurred in thin-walled steel studs under non-uniform elevated temperature conditions. Finite element analyses also demonstrated the improvements offered by the new composite panel system over the conventional cavity insulated system.
Resumo:
Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.
Resumo:
The optimisation study of the fabrication of a compact TiO2 blocking layer (via Spray Pyrolysis Deposition) for poly (3-hexylthiopene) (P3HT) for Solid State Dye Sensitized Solar Cells (SDSCs) is reported. We used a novel spray TiO2 precursor solution composition obtained by adding acetylacetone to a conventional formulation (Diisopropoxytitanium bis (acetylacetonate) in ethanol). By Scanning Electron Microscopy a TiO2 layer with compact morphology and thickness of around 100 nmis shown. Through a Tafel plot analysis an enhancement of the device diode-like behaviour induced by the acetylacetone blocking layer respect to the conventional one is observed. Significantly, the device fabricatedwith the acetylacetone blocking layer shows an overall increment of the cell performance with respect to the cellwith the conventional one (DJsc/Jsc = +13.8%, DFF/FF = +39.7%, DPCE/PCE = +55.6%). A conversion efficiency optimumis found for 15 successive spray cycles where the diode-like behaviour of the acetylacetone blocking layer is more effective. Over three batches of cells (fabricated with P3HT and dye D35) an average conversion efficiency value of 3.9% (under a class A sun simulator with 1 sun A.M. 1.5 illumination conditions) was measured. From the best cell we fabricated a conversion efficiency value of 4.5% was extracted. This represents a significant increment with respect to previously reported values for P3HT/dye D35 based SDSCs.
Resumo:
This paper examines patterns of political activity and campaigning on Twitter in the context of the 2012 election in the Australian state of Queensland. Social media have been a visible component of political campaigning in Australia at least since the 2007 federal election, with Twitter, in particular, rising to greater prominence in the 2010 federal election. At state level, however, they have remained comparatively less important thus far. In this paper, we track uses of Twitter in the Queensland campaign from its unofficial start in February through to the election day of 24 March 2012. We both examine the overall patterns of activity in the hash tag #qldvotes, and track specific interactions between politicians and other users by following some 80 Twitter accounts of sitting members of parliament and alternative candidates. Such analysis provides new insights into the different approaches to social media campaigning which were embraced by specific candidates and party organisations, as well as an indication of the relative importance of social media activities, at present, for state-level election campaigns.
Resumo:
We report inelastic neutron scattering measurements of the neutron Compton profile, J(y), for Be and for D in polycrystalline ZrD2 over a range of momentum transfers, q between 27 and 178 °A−1. The measurements were performed using the inverse geometry spectrometer eVS which is situated at the UK pulsed spallation neutron source ISIS. We have investigated deviations from impulse approximation (IA) scattering which are generically referred to as final state effects (FSEs) using a method described by Sears. This method allows both the magnitude and the q dependence of the FSE to be studied. Analysis of the measured data was compared with analysis of numerical simulations based on the harmonic approximation and good agreement was found for both ZrD2 and Be. Finally we have shown how (∇2V), where V is the interatomic potential, can be extracted from the antisymmetric component of J(y).
Resumo:
In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.
Resumo:
This paper explores why some complaints of sexual harassment lodged under Australian anti-discrimination laws might settle during the conciliation process while others do not. It draws on an analysis of data collected from files of sexual harassment complaints lodged with all state, territory and federal human rights agencies in the area of employment over a six month period. The analysis suggests that complaints that conform with the stereotypical image of sexual harassment, where a woman is physically sexually harassed by a senior man, are more likely to settle as are complaints where the complainant is in full-time, secure employment and where complainants are not legally represented. However, sustained Australian research, including by human rights agencies, is vital is to further explore these issues.
Resumo:
Groundwater flow models are usually characterized as being either transient flow models or steady state flow models. Given that steady state groundwater flow conditions arise as a long time asymptotic limit of a particular transient response, it is natural for us to seek a finite estimate of the amount of time required for a particular transient flow problem to effectively reach steady state. Here, we introduce the concept of mean action time (MAT) to address a fundamental question: How long does it take for a groundwater recharge process or discharge processes to effectively reach steady state? This concept relies on identifying a cumulative distribution function, $F(t;x)$, which varies from $F(0;x)=0$ to $F(t;x) \to \infty$ as $t\to \infty$, thereby providing us with a measurement of the progress of the system towards steady state. The MAT corresponds to the mean of the associated probability density function $f(t;x) = \dfrac{dF}{dt}$, and we demonstrate that this framework provides useful analytical insight by explicitly showing how the MAT depends on the parameters in the model and the geometry of the problem. Additional theoretical results relating to the variance of $f(t;x)$, known as the variance of action time (VAT), are also presented. To test our theoretical predictions we include measurements from a laboratory–scale experiment describing flow through a homogeneous porous medium. The laboratory data confirms that the theoretical MAT predictions are in good agreement with measurements from the physical model.