525 resultados para Transport Sustainability
Resumo:
Despite the rapidly urbanising population, public transport usage in metropolitan areas is not growing at a level that corresponds to the trend. Many people are reluctant to travel using public transport, as it is commonly associated with unpleasant experiences such as limited services, long wait time, and crowded spaces. This study aims to explore the use of mobile spatial interactions and services, and investigate their potential to increase the enjoyment of our everyday commuting experience. The main goal is to develop and evaluate mobile-mediated design interventions to foster interactions for and among passengers, as well as between passengers and public transport infrastructures, with the aim to positively influence the experience of commuting. Ultimately, this study hopes to generate findings and knowledge towards creating a more enjoyable public transport experience, as well as to explore innovative uses of mobile technologies and context-aware services for the urban lifestyle.
Resumo:
Readily accepted knowledge regarding crash causation is consistently omitted from efforts to model and subsequently understand motor vehicle crash occurrence and their contributing factors. For instance, distracted and impaired driving accounts for a significant proportion of crash occurrence, yet is rarely modeled explicitly. In addition, spatially allocated influences such as local law enforcement efforts, proximity to bars and schools, and roadside chronic distractions (advertising, pedestrians, etc.) play a role in contributing to crash occurrence and yet are routinely absent from crash models. By and large, these well-established omitted effects are simply assumed to contribute to model error, with predominant focus on modeling the engineering and operational effects of transportation facilities (e.g. AADT, number of lanes, speed limits, width of lanes, etc.) The typical analytical approach—with a variety of statistical enhancements—has been to model crashes that occur at system locations as negative binomial (NB) distributed events that arise from a singular, underlying crash generating process. These models and their statistical kin dominate the literature; however, it is argued in this paper that these models fail to capture the underlying complexity of motor vehicle crash causes, and thus thwart deeper insights regarding crash causation and prevention. This paper first describes hypothetical scenarios that collectively illustrate why current models mislead highway safety researchers and engineers. It is argued that current model shortcomings are significant, and will lead to poor decision-making. Exploiting our current state of knowledge of crash causation, crash counts are postulated to arise from three processes: observed network features, unobserved spatial effects, and ‘apparent’ random influences that reflect largely behavioral influences of drivers. It is argued; furthermore, that these three processes in theory can be modeled separately to gain deeper insight into crash causes, and that the model represents a more realistic depiction of reality than the state of practice NB regression. An admittedly imperfect empirical model that mixes three independent crash occurrence processes is shown to outperform the classical NB model. The questioning of current modeling assumptions and implications of the latent mixture model to current practice are the most important contributions of this paper, with an initial but rather vulnerable attempt to model the latent mixtures as a secondary contribution.
Resumo:
Deploying networked control systems (NCSs) over wireless networks is becoming more and more popular. However, the widely-used transport layer protocols, Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), are not designed for real-time applications. Therefore, they may not be suitable for many NCS application scenarios because of their limitations on reliability and/or delay performance, which real-control systems concern. Considering a typical type of NCSs with periodic and sporadic real-time traffic, this paper proposes a highly reliable transport layer protocol featuring a packet loss-sensitive retransmission mechanism and a prioritized transmission mechanism. The packet loss-sensitive retransmission mechanism is designed to improve the reliability of all traffic flows. And the prioritized transmission mechanism offers differentiated services for periodic and sporadic flows. Simulation results show that the proposed protocol has better reliability than UDP and improved delay performance than TCP over wireless networks, particularly when channel errors and congestions occur.
Resumo:
Measurements of the electrical conductivity, Seebeck coefficient and Hall mobility from -300K to -1300K have been carried out on multiphase hotpressed samples of the nominal composition B6Si. In all samples the conductivity and the p-type Seebeck coefficient both increase smoothly with increasing temperature. By themselves, these facts suggest small-polaronic hopping between inequivalent sites. The measured Hall mobilities are always low, but vary in sign. A possible explanation is offered for this anomalous behavior.
Resumo:
The aim of this paper is to examine the association between a range of objectively measured neighbourhood features and the likelihood of mid-aged adults walking for transport. Increased walking for transport would bring multiple benefits, including improved population and environmental health. As part of the baseline HABITAT study, 10,745 residents of Brisbane, Australia, aged 40–65 years, from 200 neighbourhoods were asked about the time they spent walking for transport. Walking data were collected by mail survey and the physical environmental features of neighbourhoods were compiled using a geographic information systems database. Walking for transport was categorised into four levels and the association between walking and each neighbourhood characteristic was examined using multilevel multinomial models. A number of threshold trends were evident; for example, off-road bikeways were consistently associated with walking between 60 and 150 min per week. Living within 500 m of public transit was also an important predictor but only for those who walked for less than 150 min per week. Interventions targeting these neighbourhood characteristics may lead to improved environmental quality, lower rates of overweight and obesity and associated chromic disease.
Resumo:
The influence of different electrolyte cations ((Li+, Na+, Mg2+, tetrabutyl ammonium (TBA+)) on the TiO2 conduction band energy (Ec) the effective electron lifetime (τn), and the effective electron diffusion coefficient (Dn) in dye-sensitized solar cells (DSCs) was studied quantitatively. The separation between Ec and the redox Fermi level, EF,redox, was found to decrease as the charge/radius ratio of the cations increased. Ec in the Mg2+ electrolyte was found to be 170 meV lower than that in the Na+ electrolyte and 400 meV lower than that in the TBA+ electrolyte. Comparison of Dn and τn in the different electrolytes was carried out by using the trapped electron concentration as a measure of the energy difference between Ec and the quasi-Fermi level, nEF, under different illumination levels. Plots of Dn as a function of the trapped electron density, nt, were found to be relatively insensitive to the electrolyte cation, indicating that the density and energetic distribution of electron traps in TiO2 are similar in all of the electrolytes studied. By contrast, plots of τn versus nt for the different cations showed that the rate of electron back reaction is more than an order of magnitude faster in the TBA+ electrolyte compared with the Na+ and Li+ electrolytes. The electron diffusion lengths in the different electrolytes followed the sequence of Na+ > Li+ > Mg2+ > TBA+. The trends observed in the AM 1.5 current–voltage characteristics of the DSCs are rationalized on the basis of the conduction band shifts and changes in electron lifetime.
Resumo:
Abnormal “polymer-in-salt” conduction behavior is observed in a solid electrolyte composed of lithium iodide (LiI) and 3-hydroxypropionitrile (HPN). Based on comprehensive investigations by X-ray diffraction (XRD) and Raman and infrared spectroscopy, this abnormal conduction behavior is attributed to the formation of new ionic associates [Lim +In−]· · ·N C (m> n) and the reinforced hydrogen bonding of I· · ·HO in the electrolyte at high LiI concentrations.
Resumo:
Infrastructure forms a vital component in supporting today’s way of life and has a significant role or impact on economic, environmental and social outcomes of the region around it. The design, construction and operation of such assets are a multi-billion dollar industry in Australia alone. Another issue that will play a major role in our way life is that of climate change and the greater concept of sustainability. With limited resources and a changing natural world it is necessary for infrastructure to be developed and maintained in a manner that is sustainable. In order to achieve infrastructure sustainability in operations it is necessary for there to be: a sustainability assessment scheme that provides a scientifically sound and realistic approach to measuring an assets level of sustainability; and, systems and tools to support the making of decisions that result in sustainable outcomes by providing feedback in a timely manner. Having these in place will then help drive the consideration of sustainability during the decision making process for infrastructure operations and maintenance. In this paper we provide two main contributions; a comparison and review of sustainability assessment schemes for infrastructure and their suitability for use in the operations phase; and, a review of decision support systems/tools in the area of infrastructure sustainability in operations. For this paper, sustainability covers not just the environment, but also finance/economic and societal/community aspects as well. This is often referred to as the Triple Bottom Line and forms one of the three dimensions of corporate sustainability [Stapledon, 2004].
Resumo:
Civil infrastructure plays a key role in supporting and improving current way of life. However, the assets can have a large impact on the region around them, which are both positive (usually for the purpose they are built) and negative (consequences and unintended effects). There is an increasing trend for society to place an importance on the role of sustainability to ensure that there is a world suitable for future generations. In order to ensure that the world for future generations is in the best possible condition it is increasingly important to look at integrating sustainability outcomes into the way industry operates, including the infrastructure industry. It is therefore important to undertake sustainability assessment of civil infrastructure projects. By having organisations take on sustainability assessments of civil infrastructure assets both during construction and in operation, the industry can assist to drive outcomes and results that will benefit society and future generations and make their own operations more efficient.
Resumo:
There is a worldwide demand for an increasingly sustainable built environment. This has resulted in the need for a more accurate evaluation of the level of sustainability of construction projects. To do this it involves the development of better measurement and benchmarking methods. One approach is to use a theoretical model to assess construction projects in terms of their sustainable development value (SDV) and sustainable development ability (SDA) for implementation in the project life cycle, where SDA measures the contribution of a project to development sustainability and as a major criterion for assessing its feasibility. This paper develops an improved SDA prototype model that incorporates the effects of dynamical factors on project sustainability. This involves the introduction of two major factors concerning technological advancement and changes in people's perceptions. A case study is used to demonstrate the procedures involved in simulation and modeling, one outcome of which is to demonstrate the greater influence of technological advancement on project sustainability than changes in perception.
Resumo:
In spite of increasing attention devoted to the importance of embedding sustainability in university curricula, few Australian universities include specific green chemistry units, and there is no mention of green or sustainable chemistry concepts in the majority of units. In this paper, an argument is posited that all universities should embed sustainable chemistry within all Chemistry courses because it is the morally correct stance to minimise the harm of climate change. Attitudes of chemistry lecturers towards integrating sustainability into their teaching have been probed and it was found, using an established model, that personal environmental perspectives are critical to their attitude. Importantly, academic staff whose research has an environmental component were more likely to incorporate sustainability into their teaching while others struggled to find ways to do so even when they believed it to be important. This paper will recommend that resources are required to assist academic staff without a green chemistry research program to incorporate sustainability into their teaching and several suggestions are provided.
Resumo:
Across time, companies have increasingly made public commitments to sustainable development and to reducing their impacts on climate change. Management remuneration plans (MRPs) are a key mechanism to motivate managers to achieve corporate goals. We review the MRPs negotiated with key management personnel in a sample of large Australian carbon-intensive companies. Our results show that, as in past decades, the companies in our sample have MRPs in place that continue to fixate on financial performance. We argue that this provides evidence of a disconnection, or ‘decoupling’, between the sustainability-related rhetoric of the sample companies, and their ‘real’ organisational practices and priorities.
Resumo:
Children bring much knowledge about sustainability issues into the early childhood classroom. In recent times, I have overheard children as young as three years of age discuss events such as the BP Oil Spill in American waters and extreme weather patterns. While aspects of these events can be overwhelming, responding to children's existing knowledge allows for an educative approach to sustainability issues, and a focus on the multitude of ways individuals and communities are working to create positive change.