302 resultados para Temporal density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mineral density (BMD) and poor bone quality. Peak bone density is achieved by the third decade of life, after which bone is maintained by a balanced cycle of bone resorption and synthesis. Age-related bone loss occurs as the bone resorption phase outweighs the bone synthesis phase of bone metabolism. Heritability accounts for up to 90% of the variability in BMD. Chromosomal loci including 1p36, 2p22-25, 11q12-13, parathyroid hormone receptor type 1 (PTHR1), interleukin-6 (IL-6), interleukin 1 alpha (IL-1α) and type II collagen A1/vitamin D receptor (COL11A1/VDR) have been linked or shown suggestive linkage with BMD in other populations. To determine whether these loci predispose to low BMD in the Irish population, we investigated 24 microsatellite markers at 7 chromosomal loci by linkage studies in 175 Irish families of probands with primary low BMD (T-score ≤ -1.5). Nonparametric analysis was performed using the maximum likelihood variance estimation and traditional Haseman-Elston tests on the Mapmaker/Sibs program. Suggestive evidence of linkage was observed with lumbar spine BMD at 2p22-25 (maximum LOD score 2.76) and 11q12-13 (MLS 2.55). One region, 1p36, approached suggestive linkage with femoral neck BMD (MLS 2.17). In addition, seven markers achieved LOD scores > 1.0, D2S149, D11S1313, D11S987, D11S1314 including those encompassing the PTHR1 (D3S3559, D3S1289) for lumbar spine BMD and D2S149 for femoral neck BMD. Our data suggest that genes within a these chromosomal regions are contributing to a predisposition to low BMD in the Irish population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal and environmental variation in vocal activity can provide information on avian behaviour and call function not available to short-term experimental studies. Intersexual differences in this variation can provide insight into selection effects. Yet factors influencing vocal behaviour have not been assessed in many birds, even those monitored by acoustic methods. This applies to the New Zealand kiwi (Apterygidae), for which call censuses are used extensively in conservation monitoring, yet which have poorly understood acoustic ecology. We investigated little spotted kiwi Apteryx owenii vocal behaviour over 3 yr, measuring influences on vocal activity in both sexes from time of night, season, weather conditions and lunar cycle. We tested hypotheses that call rate variation reflects call function, foraging efficiency, historic predation risk and variability in sound transmission, and that there are inter-sexual differences in call function. Significant seasonal variation showed that vocalisations were important in kiwi reproduction, and inter-sexual synchronisation of call rates indicated that contact, pair-bonding or resource defence were key functions. All weather variables significantly affected call rates, with elevated calling during increased humidity and ground moisture indicating a relation between vocal activity and foraging conditions. A significant decrease in calling activity on cloudy nights, combined with no moonlight effect, suggests an impact of light pollution in this species. These influences on vocal activity provide insight into kiwi call function, have direct consequences for conservation monitoring of kiwi, and have wider implications in understanding vocal behaviour in a range of nocturnal birds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammographic density (MD) is a strong risk factor for breast cancer. It is altered by exogenous endocrine treatments, including hormone replacement therapy and Tamoxifen. Such agents also modify breast cancer (BC) risk. However, the biomolecular basis of how systemic endocrine therapy modifies MD and MD-associated BC risk is poorly understood. This study aims to determine whether our xenograft biochamber model can be used to study the effectiveness of therapies aimed at modulating MD, by examine the effects of Tamoxifen and oestrogen on histologic and radiographic changes in high and low MD tissues maintained within the biochamber model. High and low MD human tissues were precisely sampled under radiographic guidance from prophylactic mastectomy fresh specimens of high-risk women, then inserted into separate vascularized murine biochambers. The murine hosts were concurrently implanted with Tamoxifen, oestrogen or placebo pellets, and the high and low MD biochamber tissues maintained in the murine host environment for 3 months, before the high and low MD biochamber tissues were harvested for histologic and radiographic analyses. The radiographic density of high MD tissue maintained in murine biochambers was decreased in Tamoxifen-treated mice compared to oestrogen-treated mice (p = 0.02). Tamoxifen treatment of high MD tissue in SCID mice led to a decrease in stromal (p = 0.009), and an increase in adipose (p = 0.023) percent areas, compared to placebo-treated mice. No histologic or radiographic differences were observed in low MD biochamber tissue with any treatment. High MD biochamber tissues maintained in mice implanted with Tamoxifen, oestrogen or placebo pellets had dynamic and measurable histologic compositional and radiographic changes. This further validates the dynamic nature of the MD xenograft model, and suggests the biochamber model may be useful for assessing the underlying molecular pathways of Tamoxifen-reduced MD, and in testing of other pharmacologic interventions in a preclinical model of high MD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computed tomography number to relative electron density (CT-RED) calibration is performed when commissioning a radiotherapy CT scanner by imaging a calibration phantom with inserts of specified RED and recording the CT number displayed. In this work, CT-RED calibrations were generated using several commercially available phantoms to observe the effect of phantom geometry on conversion to electron density and, ultimately, the dose calculation in a treatment planning system. Using an anthropomorphic phantom as a gold standard, the CT number of a material was found to depend strongly on the amount and type of scattering material surrounding the volume of interest, with the largest variation observed for the highest density material tested, cortical bone. Cortical bone gave a maximum CT number difference of 1,110 when a cylindrical insert of diameter 28 mm scanned free in air was compared to that in the form of a 30 × 30 cm2 slab. The effect of using each CT-RED calibration on planned dose to a patient was quantified using a commercially available treatment planning system. When all calibrations were compared to the anthropomorphic calibration, the largest percentage dose difference was 4.2 % which occurred when the CT-RED calibration curve was acquired with heterogeneity inserts removed from the phantom and scanned free in air. The maximum dose difference observed between two dedicated CT-RED phantoms was ±2.1 %. A phantom that is to be used for CT-RED calibrations must have sufficient water equivalent scattering material surrounding the heterogeneous objects that are to be used for calibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contamination of pesticides, which are applied to rice paddy fields, in river water has been a major problem in Japan for decades. A prolonged water holding period after pesticide application in paddy fields is expected to reduce the concentration of rice pesticides in river water. Therefore, a long monitoring campaign was conducted from 2004 to 2010 to measure the concentrations of pesticides in water samples collected from several points along the Chikugo River (Japan) including tributaries and the main stream to see if there was any reduction in the level of pesticide contamination after the extension of the water holding period (from 3–4 days to 7 days) was introduced in 2007 by the new water management regulation. No significant difference (p > 0.05) was found in pesticide concentrations between the periods before and after 2007 in all monitoring points, except in one tributary where the pesticide concentrations after 2007 were even higher than that of the previous period. A detailed study in one of the tributaries also revealed that the renovated infrastructure did not reduce the pesticide concentrations in the drainage canals. Neither the introduction of the new regulation nor the improved infrastructure had any significant effect on reducing the contamination of pesticides in water of the Chikugo River. It is probably because most farmers did not properly implement the new requirement of holding paddy water within the field for 7 days after the application of pesticides. Only tightening the regulation would not be sufficient and more actions should be taken to enforce/provide extension support for the new water management regulation in order to reduce the level of residual pesticides in river water in Japan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giant Cell Arteritis (GCA) is the most common vasculitis affecting the elderly. Archived formalin-fixed paraffin-embedded (FFPE) temporal artery biopsy (TAB) specimens potentially represent a valuable resource for large-scale genetic analysis of this disease. FFPE TAB samples were obtained from 12 patients with GCA. Extracted TAB DNA was assessed by real time PCR before restoration using the Illumina HD FFPE Restore Kit. Paired FFPE-blood samples were genotyped on the Illumina OmniExpress FFPE microarray. The FFPE samples that passed stringent quality control measures had a mean genotyping success of >97%. When compared with their matching peripheral blood DNA, the mean discordant heterozygote and homozygote single nucleotide polymorphisms calls were 0.0028 and 0.0003, respectively, which is within the accepted tolerance of reproducibility. This work demonstrates that it is possible to successfully obtain high-quality microarray-based genotypes FFPE TAB samples and that this data is similar to that obtained from peripheral blood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Forearm fractures affect 1.7 million individuals worldwide each year and most occur earlier in life than hip fractures. While the heritability of forearm bone mineral density (BMD) and fracture is high, their genetic determinants are largely unknown. Aim To identify genetic variants associated with forearm BMD and forearm fractures. Methods BMD at distal radius, measured by dualenergy x-ray absorptiometry, was tested for association with common genetic variants. We conducted a metaanalysis of genome-wide association studies for BMD in 5866 subjects of European descent and then selected the variants for replication in 715 Mexican American samples. Gene-based association was carried out to supplement the single-nucleotide polymorphism (SNP) association test. We then tested the BMD-associated SNPs for association with forearm fracture in 2023 cases and 3740 controls. Results We found that five SNPs in the introns of MEF2C were associated with forearm BMD at a genome-wide significance level (p<5×10-8) in meta-analysis (lead SNP, rs11951031[T] -0.20 SDs per allele, p=9.01×10-9). The gene-based association test suggested an association between MEF2C and forearm BMD ( p=0.003). The association between MEF2C variants and risk of fracture did not achieve statistical significance (SNP rs12521522[A]: OR=1.14 (95% CI 0.92 to 1.35), p=0.14). Meta-analysis also revealed two genome-wide suggestive loci at CTNNA2 and 6q23.2. Conclusions These findings demonstrate that variants at MEF2C were associated with forearm BMD, implicating this gene in the determination of BMD at forearm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Bisphosphonates can increase bone mineral density (BMD) in children with osteogenesis imperfecta (OI). In this study of adults with OI type I, risedronate increased BMD at lumbar spine (but not total hip) and decreased bone turnover. However, the fracture rate in these patients remained high. Introduction Intravenous bisphosphonates given to children with OI can increase BMD and reduce fracture incidence. Oral and/or intravenous bisphosphonates may have similar effects in adults with OI. We completed an observational study of the effect of risedronate in adults with OI type I. Methods Thirty-two adults (mean age, 39 years) with OI type I were treated with risedronate (total dose, 35 mg weekly) for 24 months. Primary outcome measures were BMD changes at lumbar spine (LS) and total hip (TH). Secondary outcome measures were fracture incidence, bone pain, and change in bone turnover markers (serum procollagen type I aminopropeptide (P1NP) and bone ALP). A meta-analysis of published studies of oral bisphosphonates in adults and children with OI was performed. Results Twenty-seven participants (ten males and seventeen females) completed the study. BMD increased at LS by 3.9% (0.815 vs. 0.846 g/cm 2, p=0.007; mean Z-score, -1.93 vs. -1.58, p=0.002), with no significant change at TH. P1NP fell by 37% (p=0.00041), with no significant change in bone ALP (p=0.15). Bone pain did not change significantly (p=0.6). Fracture incidence remained high, with 25 clinical fractures and 10 major fractures in fourteen participants (0.18 major fractures per person per year), with historical data of 0.12 fractures per person per year. The meta-analysis did not demonstrate a significant difference in fracture incidence in patients with OI treated with oral bisphosphonates. Conclusions Risedronate in adults with OI type I results in modest but significant increases in BMD at LS, and decreased bone turnover. However, this may be insufficient to make a clinically significant difference to fracture incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peak bone mass achieved in adolescence is a determinant of bone mass in later life. In order to identify genetic variants affecting bone mineral density (BMD), we performed a genome-wide association study of BMD and related traits in 1518 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). We compared results with a scan of 134 adults with high or low hip BMD. We identified associations with BMD in an area of chromosome 12 containing the Osterix (SP7) locus, a transcription factor responsible for regulating osteoblast differentiation (ALSPAC: P = 5.8 × 10-4; Australia: P = 3.7 × 10-4). This region has previously shown evidence of association with adult hip and lumbar spine BMD in an Icelandic population, as well as nominal association in a UK population. A meta-analysis of these existing studies revealed strong association between SNPs in the Osterix region and adult lumbar spine BMD (P = 9.9 × 10-11). In light of these findings, we genotyped a further 3692 individuals from ALSPAC who had whole body BMD and confirmed the association in children as well (P = 5.4 × 10-5). Moreover, all SNPs were related to height in ALSPAC children, but not weight or body mass index, and when height was included as a covariate in the regression equation, the association with total body BMD was attenuated. We conclude that genetic variants in the region of Osterix are associated with BMD in children and adults probably through primary effects on growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in genetic control of BMD by skeletal sites and genders were examined by complex segregation analysis in 816 members of 147 families with probands with extreme low BMD. Spine BMD correlated more strongly in male-male comparisons and hip BMD in female-female comparisons, consistent with gender- and site-specificity of BMD heritability. Introduction: Evidence from studies in animals and humans suggests that the genetic control of bone mineral density (BMD) may differ at different skeletal sites and between genders. This question has important implications for the design and interpretation of genetic studies of osteoporosis. Methods: We examined the genetic profile of 147 families with 816 individuals recruited through probands with extreme low BMD (T-score < −2.5, Z-score < −2.0). Complex segregation analysis was performed using the Pedigree Analysis Package. BMD was measured by DXA at both lumbar spine (L1-L4) and femoral neck. Results: Complex segregation analysis excluded purely monogenic and environmental models of segregation of lumbar spine and femoral neck BMD in these families. Pure polygenic models were excluded at the lumbar spine when menopausal status was considered as a covariate, but not at the femoral neck. Mendelian models with a residual polygenic component were not excluded. These models were consistent with the presence of a rare Mendelian genotype of prevalence 3–19 %, causing high BMD at the hip and spine in these families, with additional polygenic effects. Total heritability range at the lumbar spine was 61–67 % and at the femoral neck was 44–67 %. Significant differences in correlation of femoral neck and lumbar spine BMD were observed between male and female relative pairs, with male-male comparisons exhibiting stronger lumbar spine BMD correlation than femoral neck, and female-female comparisons having greater femoral neck BMD correlation than lumbar spine. These findings remained true for parent-offspring correlations when menopausal status was taken into account. The recurrence risk ratio for siblings of probands of a Z-score < −2.0 was 5.4 at the lumbar spine and 5.9 at the femoral neck. Conclusions: These findings support gender- and site-specificity of the inheritance of BMD. These results should be considered in the design and interpretation of genetic studies of osteoporosis.