611 resultados para Sustainable Cities
Resumo:
Many cities worldwide face the prospect of major transformation as the world moves towards a global information order. In this new era, urban economies are being radically altered by dynamic processes of economic and spatial restructuring. The result is the creation of ‘informational cities’ or its new and more popular name, ‘knowledge cities’. For the last two centuries, social production had been primarily understood and shaped by neo-classical economic thought that recognized only three factors of production: land, labor and capital. Knowledge, education, and intellectual capacity were secondary, if not incidental, factors. Human capital was assumed to be either embedded in labor or just one of numerous categories of capital. In the last decades, it has become apparent that knowledge is sufficiently important to deserve recognition as a fourth factor of production. Knowledge and information and the social and technological settings for their production and communication are now seen as keys to development and economic prosperity. The rise of knowledge-based opportunity has, in many cases, been accompanied by a concomitant decline in traditional industrial activity. The replacement of physical commodity production by more abstract forms of production (e.g. information, ideas, and knowledge) has, however paradoxically, reinforced the importance of central places and led to the formation of knowledge cities. Knowledge is produced, marketed and exchanged mainly in cities. Therefore, knowledge cities aim to assist decision-makers in making their cities compatible with the knowledge economy and thus able to compete with other cities. Knowledge cities enable their citizens to foster knowledge creation, knowledge exchange and innovation. They also encourage the continuous creation, sharing, evaluation, renewal and update of knowledge. To compete nationally and internationally, cities need knowledge infrastructures (e.g. universities, research and development institutes); a concentration of well-educated people; technological, mainly electronic, infrastructure; and connections to the global economy (e.g. international companies and finance institutions for trade and investment). Moreover, they must possess the people and things necessary for the production of knowledge and, as importantly, function as breeding grounds for talent and innovation. The economy of a knowledge city creates high value-added products using research, technology, and brainpower. Private and the public sectors value knowledge, spend money on its discovery and dissemination and, ultimately, harness it to create goods and services. Although many cities call themselves knowledge cities, currently, only a few cities around the world (e.g., Barcelona, Delft, Dublin, Montreal, Munich, and Stockholm) have earned that label. Many other cities aspire to the status of knowledge city through urban development programs that target knowledge-based urban development. Examples include Copenhagen, Dubai, Manchester, Melbourne, Monterrey, Singapore, and Shanghai. Knowledge-Based Urban Development To date, the development of most knowledge cities has proceeded organically as a dependent and derivative effect of global market forces. Urban and regional planning has responded slowly, and sometimes not at all, to the challenges and the opportunities of the knowledge city. That is changing, however. Knowledge-based urban development potentially brings both economic prosperity and a sustainable socio-spatial order. Its goal is to produce and circulate abstract work. The globalization of the world in the last decades of the twentieth century was a dialectical process. On one hand, as the tyranny of distance was eroded, economic networks of production and consumption were constituted at a global scale. At the same time, spatial proximity remained as important as ever, if not more so, for knowledge-based urban development. Mediated by information and communication technology, personal contact, and the medium of tacit knowledge, organizational and institutional interactions are still closely associated with spatial proximity. The clustering of knowledge production is essential for fostering innovation and wealth creation. The social benefits of knowledge-based urban development extend beyond aggregate economic growth. On the one hand is the possibility of a particularly resilient form of urban development secured in a network of connections anchored at local, national, and global coordinates. On the other hand, quality of place and life, defined by the level of public service (e.g. health and education) and by the conservation and development of the cultural, aesthetic and ecological values give cities their character and attract or repel the creative class of knowledge workers, is a prerequisite for successful knowledge-based urban development. The goal is a secure economy in a human setting: in short, smart growth or sustainable urban development.
Resumo:
‘Knowledge’ is a resource, which relies on the past for a better future. In the 21st century, more than ever before, cities around the world depend on the knowledge of their citizens, their institutions and their firms and enterprises. The knowledge image, the human competence and the reputation of their public and private institutions and corporations profiles a city. It attracts investment, qualified labour and professionals, as well as students and researchers. And it creates local life spaces and professional milieus, which offer the quality of life to the citizens that are seeking to cope with the challenges of modern life in a competitive world. Integrating knowledge-based development in urban strategies and policies, beyond the provision of schools and locations for higher education, has become a new ambitious arena of city politics. Coming from theory to practice, and bringing together the manifold knowledge stakeholders in a city and preparing joint visions for the knowledge city is a new challenge for city managers, urban planners and leaders of the civic society . It requires visionary power, creativity, holistic thinking, the willingness to cooperate with all groups of the local civil society, and the capability to moderate communication processes to overcome conflicts and to develop joint action for a sustainable future.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision-making system and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities via wired and wireless networks. Particularly, technology convergence creates new ways in which information and telecommunication technologies are used and formed the backbone of urban management. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices and provides new opportunities in the management of Ubiquitous Eco Cities. This chapter discusses developments in telecommunication infrastructure and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities.
Resumo:
Social infrastructure and sustainable development represent two distinct but interlinked concepts bounded by a geographic location. For those involved in the planning of a residential development, the notion of social infrastructure is crucial to the building of a healthy community and sustainable environment. This is because social infrastructure is provided in response to the basic needs of communities and to enhance the quality of life, equity, stability and social well being. It also acts as the building block to the enhancement of human and social capital. While acknowledging the different levels of social infrastructure provision from neighbourhood, local, district and sub-regional levels, past evidence has shown that the provision at neighbourhood and local level and are affecting well-being of residents and the community sustainability. With intense physical development taking place in Australia's South East Queensland (SEQ) region, local councils are under immense pressure to provide adequate social and community facilities for their residents. This paper shows how participation-oriented, need-sensitive Integrated Social Infrastructure Planning Guideline is used to offer a solution for the efficient planning and provision of multi-level social infrastructure for the SEQ region. The paper points out to the successful implementation of the guideline for social infrastructure planning in multiple levels of spatial jurisdictions of Australia's fastest growing region.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. In the Ubiquitous Eco Cities, telecommunication technologies plan an important role in monitoring and managing activities over wired, wireless and fibre-optic networks. particularly technology convergence creates new ways in which the information and telecommunication technologies are used and formed the back bone or urban management systems. The research paper reports and introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities.
Resumo:
As the world’s rural populations continue to migrate from farmland to sprawling cities, transport networks form an impenetrable maze within which monocultures of urban form erupt from the spaces in‐between. These urban monocultures are as problematic to human activity in cities as cropping monocultures are to ecosystems in regional landscapes. In China, the speed of urbanisation is exacerbating the production of mono‐functional private and public spaces. Edges are tightly controlled. Barriers and management practices at these boundaries are discouraging the formation of new synergistic relationships, critical in the long‐term stability of ecosystems that host urban habitats. Some urban planners, engineers, urban designers, architects and landscape architects have recognised these shortcomings in contemporary Chinese cities. The ideology of sustainability, while critically debated, is bringing together thinking people in these and other professions under the umbrella of an ecological ethic. This essay aims to apply landscape ecology theory, a conceptual framework used by many professionals involved in land development processes, to a concept being developed by BAU International called Networks Cities: a city with its various land uses arranged in nets of continuity, adjacency, and superposition. It will consider six lesser‐known concepts in relation to creating enhanced human activity along (un)structured edges between proposed nets and suggest new frontiers that might be challenged in an eco‐city. Ecological theory suggests that sustaining biodiversity in regions and landscapes depends on habitat distribution patterns. Flora and fauna biologists have long studied edge habitats and have been confounded by the paradox that maximising the breadth of edges is detrimental to specialist species but favourable to generalist species. Generalist species of plants and animals tolerate frequent change in the landscape, frequenting two or more habitats for their survival. Specialist species are less tolerant of change, having specific habitat requirements during their life cycle. Protecting species richness then may be at odds with increasing mixed habitats or mixed‐use zones that are dynamic places where diverse activities occur. Forman (1995) in his book Land Mosaics however argues that these two objectives of land use management are entirely compatible. He postulates that an edge may be comprised of many small patches, corridors or convoluting boundaries of large patches. Many ecocentrists now consider humans to be just another species inhabiting the ecological environments of our cities. Hence habitat distribution theory may be useful in planning and designing better human habitats in a rapidly urbanising context like China. In less‐constructed environments, boundaries and edges provide important opportunities for the movement of multi‐habitat species into, along and from adjacent land use areas. For instance, invasive plants may escape into a national park from domestic gardens while wildlife may forage on garden plants in adjoining residential areas. It is at these interfaces that human interactions too flow backward and forward between land types. Spray applications of substances by farmers on cropland may disturb neighbouring homeowners while suburban residents may help themselves to farm produce on neighbouring orchards. Edge environments are some of the most dynamic and contested spaces in the landscape. Since most of us require access to at least two or three habitats diurnally, weekly, monthly or seasonally, their proximity to each other becomes critical in our attempts to improve the sustainability of our cities.
Resumo:
This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.
Resumo:
This paper argues a model of open system design for sustainable architecture, based on a thermodynamics framework of entropy as an evolutionary paradigm. The framework can be simplified to stating that an open system evolves in a non-linear pattern from a far-from-equilibrium state towards a non-equilibrium state of entropy balance, which is a highly ordered organization of the system when order comes out of chaos. This paper is work in progress on a PhD research project which aims to propose building information modelling for optimization and adaptation of buildings environmental performance as an alternative sustainable design program in architecture. It will be used for efficient distribution and consumption of energy and material resource in life-cycle buildings, with the active involvement of the end-users and the physical constraints of the natural environment.
Resumo:
This paper argues a model of open systems evolution based on evolutionary thermodynamics and complex system science, as a design paradigm for sustainable architecture. The mechanism of open system evolution is specified in mathematical simulations and theoretical discourses. According to the mechanism, the authors propose an intelligent building model of sustainable design by a holistic information system of the end-users, the building and nature. This information system is used to control the consumption of energy and material resources in building system at microscopic scale, to adapt the environmental performance of the building system to the natural environment at macroscopic scale, for an evolutionary emergence of sustainable performance of buildings.
Resumo:
The Subtropical Design Handbook for Planners is primarily intended to provide advice in developing planning schemes to achieve the South East Queensland Regional Plan’s vision. This calls for ‘development which is sustainable and well-designed, and where the subtropical character of the region is recognised and reinforced’.
Resumo:
Many fashion businesses in New Zealand have followed a global trend towards inexpensive off shore manufacturing. The transfer of the production of garments to overseas workers has had consequences for the wellbeing of local businesses, fashion designers and garment makers. The gradual decline of fashion manufacturing also appears to have resulted in a local fashion scene where many garments look the same in style, colour, fabric, cut and fit. The excitement of the past, where the majority of fashion designers established their own individuality through the cut and shape of the garments that they produced, may have been inadvertently lost in an effort to take advantage of cost savings achieved through mass production and manufacturing methods which are now largely unavailable in New Zealand. Consequently, a sustainable local fashion and manufacturing industry, with design integrity, seems further out of reach. This paper is focussed upon the thesis that the design and manufacture of a fashion garment, bearing in mind certain economic and practical restrictions at its inception, can contribute to a more sustainable fashion manufacturing industry in New Zealand.
Resumo:
A key concern in the field of contemporary fashion/textiles design is the emergence of ‘fast fashion’: best explained as "buy it Friday, wear it Saturday and throw it away on Sunday" (O'Loughlin, 2007). In this contemporary retail atmosphere of “pile it high: sell it cheap” and “quick to market”, even designer goods have achieved a throwaway status. This modern culture of consumerism is the antithesis of sustainability and is proving a dilemma surrounding sustainable practice for designers and producers in the disciplines (de Blas, 2010). Design researchers including those in textiles/fashion have begun to explore what is a key question in the 21st century in order to create a vision and reason for their disciplines: Can products be designed to have added value to the consumer and hence contribute to a more sustainable industry? Fashion Textiles Design has much to answer for in contributing to the problems of unsustainable practices on a global scale in design, production and waste. However, designers within this field also have great potential to contribute to practical ‘real world’ solutions. ----- ----- This paper provides an overview of some of the design and technological developments from the fashion/textiles industry, endorsing a model where designers and technicians use their transferrable skills for wellbeing rather than desire. Smart materials in the form of responsive and adaptive fibres and fabrics combined with electro active devices, and ICT are increasingly shaping many aspects of society particularly in the leisure industry and interactive consumer products are ever more visible in healthcare. Combinations of biocompatible delivery devices with bio sensing elements can create analyse, sense and actuate early warning and monitoring systems which can be linked to data logging and patient records via intelligent networks. Patient sympathetic, ‘smart’ fashion/textiles applications based on interdisciplinary expertise utilising textiles design and technology is emerging. An analysis of a series of case studies demonstrates the potential of fashion textiles design practitioners to exploit the concept of value adding through technological garment and textiles applications and enhancement for health and wellbeing and in doing so contribute to a more sustainable future fashion/textiles design industry.
Resumo:
Luxury is a quality that is difficult to define as the historical concept of luxury appears to be both dynamic and culturally specific. The everyday definition explains a ‘luxury’ in relation to a necessity: a luxury (product or service) is defined as something that consumers want rather than need. However, the growth of global markets has seen a boom in what are now referred to as ‘luxury brands’. This branding of products as luxury has resulted in a change in the way consumers understand luxury goods and services. In their attempts to characterize a luxury brand, Fionda & Moore in their article “The anatomy of a Luxury Brand” summarize a range of critical conditions that are in addition to product branding “... including product and design attributes of quality, craftsmanship and innovative, creative and unique products” (Fionda & Moore, 2009). For the purposes of discussing fashion design however, quality and craftsmanship are inseparable while creativity and innovation exist under different conditions. The terms ‘creative’ and ‘innovative’ are often used inter-changeably and are connected with most descriptions of the design process, defining ‘design’ and ‘fashion’ in many cases. Christian Marxt and Fredrik Hacklin identify this condition in their paper “Design, product development, innovation: all the same in the end?”(Marxt & Hacklin, 2005) and suggest that design communities should be aware that the distinction between these terms, whilst once quite definitive, is becoming narrow to a point where they will mean the same thing. In relation to theory building in the discipline this could pose significant problems. Brett Richards (2003) identifies innovation as different from creativity in that innovation aims to transform and implement rather than simply explore and invent. Considering this distinction, in particular relation to luxury branding, may affect the way in which design can contribute to a change in the way luxury fashion goods might be perceived in a polarised fashion market, namely suggesting that ‘luxury’ is what consumers need rather than the ‘pile it high, sell it cheap’ fashion that the current market dynamic would indicate they want. This paper attempts to explore the role of innovation as a key contributing factor in luxury concepts, in particular the relationship between innovation and creativity, the conditions which enable innovation, the role of craftsmanship in innovation and design innovation in relation to luxury fashion products. An argument is presented that technological innovation can be demonstrated as a common factor in the development of luxury fashion product and that the connection between designer and maker will play an important role in the development of luxury fashion goods for a sustainable fashion industry.
Resumo:
This article provides a discussion about how new technologies will enable Fashion Textiles Research to be disseminated amongst a new generation of producers and consumers via interactive and web technologies. How appropriate are these methods for Fashion Textiles Research? What are the advantages of these mediums and what will this mean for researchers, producers and consumers now and in the future, as the traditional platforms such as Journal Papers and Conferences, become obsolete? Can we predict the future of communicating textile research by assessing the way in which research is being conducted with the use of electronic databases, the Internet and with the emergence of electronic journals?
Resumo:
To be scholarly in learning and teaching is rigorous academic work. It demands: currency and command of both discipline subject matter and educational theory; inquiring, methodical, and reflective approaches; the collection, evaluation and documentation of evidence of learning and teaching efficacy; and, optimally, entails participation in and communication among a community of teaching professionals. This chapter examines the author’s own practice in this regard to explicate the ‘how’ and ‘why’ of scholarly and scholarship approaches, as much as the ‘what’ and ‘where’ of that endeavour. In doing so, this meta‐analysis is made ‘community property’, in the same way that Shulman (1993: 6) exhorted we ‘change the status of teaching from private to community property’ so that teaching might be more greatly valued in the academy.