270 resultados para Rejection-sampling Algorithm
Resumo:
The efficiency with which a small beam trawl (1 x 0.5 m mouth) sampled postlarvae and juveniles of tiger prawns Penaeus esculentus and P, semisulcatus at night was estimated in 3 tropical seagrass communities (dominated by Thalassia hemprichii, Syringodium isoetifolium and Enhalus acoroides, respectively) in the shallow waters of the Gulf of Carpentaria in northern Australia. An area of seagrass (40 x 3 m) was enclosed by a net and the beam trawl was repeatedly hand-hauled over the substrate. Net efficiency (q) was calculated using 4 methods: the unweighted Leslie, weighted Leslie, DeLury and Maximum-likelihood (ML) methods. The Maximum-likelihood is the preferred method for estimating efficiency because it makes the fewest assumptions and is not affected by zero catches. The major difference in net efficiencies was between postlarvae (mean ML q +/- 95% confidence limits = 0.66 +/- 0.16) and juveniles of both species (mean q for juveniles in water less than or equal to 1.0 m deep = 0.47 +/- 0.05), i.e. the beam trawl was more efficient at capturing postlarvae than juveniles. There was little difference in net efficiency for P, esculentus between seagrass types (T, hemprichii versus S. isoetifolium), even though the biomass and morphologies of seagrass in these communities differed greatly (biomasses were 54 and 204 g m(-2), respectively). The efficiency of the net appeared to be the same for juveniles of the 2 species in shallow water, but was lower for juvenile P, semisulcatus at high tide when the water was deeper (1.6 to 1.9 m) (0.35 +/- 0.08). The lower efficiency near the time of high tide is possibly because the prawns are more active at high than low tide, and can also escape above the net. Factors affecting net efficiency and alternative methods of estimating net efficiency are discussed.
Resumo:
Traditional comparisons between the capture efficiency of sampling devices have generally looked at the absolute differences between devices. We recommend that the signal-to-noise ratio be used when comparing the capture efficiency of benthic sampling devices. Using the signal-to-noise ratio rather than the absolute difference has the advantages that the variance is taken into account when determining how important the difference is, the hypothesis and minimum detectable difference can be made identical for all taxa, it is independent of the units used for measurement, and the sample-size calculation is independent of the variance. This new technique is illustrated by comparing the capture efficiency of a 0.05 m(2) van Veen grab and an airlift suction device, using samples taken from Heron and One Tree lagoons, Australia.
Resumo:
During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.
Resumo:
This paper proposes solutions to three issues pertaining to the estimation of finite mixture models with an unknown number of components: the non-identifiability induced by overfitting the number of components, the mixing limitations of standard Markov Chain Monte Carlo (MCMC) sampling techniques, and the related label switching problem. An overfitting approach is used to estimate the number of components in a finite mixture model via a Zmix algorithm. Zmix provides a bridge between multidimensional samplers and test based estimation methods, whereby priors are chosen to encourage extra groups to have weights approaching zero. MCMC sampling is made possible by the implementation of prior parallel tempering, an extension of parallel tempering. Zmix can accurately estimate the number of components, posterior parameter estimates and allocation probabilities given a sufficiently large sample size. The results will reflect uncertainty in the final model and will report the range of possible candidate models and their respective estimated probabilities from a single run. Label switching is resolved with a computationally light-weight method, Zswitch, developed for overfitted mixtures by exploiting the intuitiveness of allocation-based relabelling algorithms and the precision of label-invariant loss functions. Four simulation studies are included to illustrate Zmix and Zswitch, as well as three case studies from the literature. All methods are available as part of the R package Zmix, which can currently be applied to univariate Gaussian mixture models.
Resumo:
This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.
Resumo:
Large integration of solar Photo Voltaic (PV) in distribution network has resulted in over-voltage problems. Several control techniques are developed to address over-voltage problem using Deterministic Load Flow (DLF). However, intermittent characteristics of PV generation require Probabilistic Load Flow (PLF) to introduce variability in analysis that is ignored in DLF. The traditional PLF techniques are not suitable for distribution systems and suffer from several drawbacks such as computational burden (Monte Carlo, Conventional convolution), sensitive accuracy with the complexity of system (point estimation method), requirement of necessary linearization (multi-linear simulation) and convergence problem (Gram–Charlier expansion, Cornish Fisher expansion). In this research, Latin Hypercube Sampling with Cholesky Decomposition (LHS-CD) is used to quantify the over-voltage issues with and without the voltage control algorithm in the distribution network with active generation. LHS technique is verified with a test network and real system from an Australian distribution network service provider. Accuracy and computational burden of simulated results are also compared with Monte Carlo simulations.
Resumo:
Aim Frail older people typically suffer several chronic diseases, receive multiple medications and are more likely to be institutionalized in residential aged care facilities. In such patients, optimizing prescribing and avoiding use of high-risk medications might prevent adverse events. The present study aimed to develop a pragmatic, easily applied algorithm for medication review to help clinicians identify and discontinue potentially inappropriate high-risk medications. Methods The literature was searched for robust evidence of the association of adverse effects related to potentially inappropriate medications in older patients to identify high-risk medications. Prior research into the cessation of potentially inappropriate medications in older patients in different settings was synthesized into a four-step algorithm for incorporation into clinical assessment protocols for patients, particularly those in residential aged care facilities. Results The algorithm comprises several steps leading to individualized prescribing recommendations: (i) identify a high-risk medication; (ii) ascertain the current indications for the medication and assess their validity; (iii) assess if the drug is providing ongoing symptomatic benefit; and (iv) consider withdrawing, altering or continuing medications. Decision support resources were developed to complement the algorithm in ensuring a systematic and patient-centered approach to medication discontinuation. These include a comprehensive list of high-risk medications and the reasons for inappropriateness, lists of alternative treatments, and suggested medication withdrawal protocols. Conclusions The algorithm captures a range of different clinical scenarios in relation to potentially inappropriate medications, and offers an evidence-based approach to identifying and, if appropriate, discontinuing such medications. Studies are required to evaluate algorithm effects on prescribing decisions and patient outcomes.
Resumo:
There is an increased interest on the use of UAVs for environmental research such as tracking bush fires, volcanic eruptions, chemical accidents or pollution sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A method for generating sparse plumes in a virtual environment was also developed. Results indicated the ability of the algorithms to track plumes in 2D and 3D. The system has been tested with hardware in the loop (HIL) simulations and in flight using a CO2 gas sensor mounted to a multi-rotor UAV. The UAV is controlled by the plume tracking algorithm running on the ground control station (GCS).
Resumo:
The rapid uptake of transcriptomic approaches in freshwater ecology has seen a wealth of data produced concerning the ways in which organisms interact with their environment on a molecular level. Typically, such studies focus either at the community level and so don’t require species identifications, or on laboratory strains of known species identity or natural populations of large, easily identifiable taxa. For chironomids, impediments still exist for applying these technologies to natural populations because they are small-bodied and often require time-consuming secondary sorting of stream material and morphological voucher preparation to confirm species diagnosis. These procedures limit the ability to maintain RNA quantity and quality in such organisms because RNA degrades rapidly and gene expression can be altered rapidly in organisms; thereby limiting the inclusion of such taxa in transcriptomic studies. Here, we demonstrate that these limitations can be overcome and outline an optimised protocol for collecting, sorting and preserving chironomid larvae that enables retention of both morphological vouchers and RNA for subsequent transcriptomics purposes. By ensuring that sorting and voucher preparation are completed within <4 hours after collection and that samples are kept cold at all times, we successfully retained both RNA and morphological vouchers from all specimens. Although not prescriptive in specific methodology, we anticipate that this paper will assist in promoting transcriptomic investigations of the sublethal impact on chironomid gene expression of changes to aquatic environments.
Resumo:
Web data can often be represented in free tree form; however, free tree mining methods seldom exist. In this paper, a computationally fast algorithm FreeS is presented to discover all frequently occurring free subtrees in a database of labelled free trees. FreeS is designed using an optimal canonical form, BOCF that can uniquely represent free trees even during the presence of isomorphism. To avoid enumeration of false positive candidates, it utilises the enumeration approach based on a tree-structure guided scheme. This paper presents lemmas that introduce conditions to conform the generation of free tree candidates during enumeration. Empirical study using both real and synthetic datasets shows that FreeS is scalable and significantly outperforms (i.e. few orders of magnitude faster than) the state-of-the-art frequent free tree mining algorithms, HybridTreeMiner and FreeTreeMiner.
Resumo:
A5-GMR-1 is a synchronous stream cipher used to provide confidentiality for communications between satellite phones and satellites. The keystream generator may be considered as a finite state machine, with an internal state of 81 bits. The design is based on four linear feedback shift registers, three of which are irregularly clocked. The keystream generator takes a 64-bit secret key and 19-bit frame number as inputs, and produces an output keystream of length between $2^8$ and $2^{10}$ bits. Analysis of the initialisation process for the keystream generator reveals serious flaws which significantly reduce the number of distinct keystreams that the generator can produce. Multiple (key, frame number) pairs produce the same keystream, and the relationship between the various pairs is easy to determine. Additionally, many of the keystream sequences produced are phase shifted versions of each other, for very small phase shifts. These features increase the effectiveness of generic time-memory tradeoff attacks on the cipher, making such attacks feasible.
Resumo:
A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.
Resumo:
Quantifying nitrous oxide (N(2)O) fluxes, a potent greenhouse gas, from soils is necessary to improve our knowledge of terrestrial N(2)O losses. Developing universal sampling frequencies for calculating annual N(2)O fluxes is difficult, as fluxes are renowned for their high temporal variability. We demonstrate daily sampling was largely required to achieve annual N(2)O fluxes within 10% of the best estimate for 28 annual datasets collected from three continents, Australia, Europe and Asia. Decreasing the regularity of measurements either under- or overestimated annual N(2)O fluxes, with a maximum overestimation of 935%. Measurement frequency was lowered using a sampling strategy based on environmental factors known to affect temporal variability, but still required sampling more than once a week. Consequently, uncertainty in current global terrestrial N(2)O budgets associated with the upscaling of field-based datasets can be decreased significantly using adequate sampling frequencies.
Resumo:
As an extension to an activity introducing Year 5 students to the practice of statistics, the software TinkerPlots made it possible to collect repeated random samples from a finite population to informally explore students’ capacity to begin reasoning with a distribution of sample statistics. This article provides background for the sampling process and reports on the success of students in making predictions for the population from the collection of simulated samples and in explaining their strategies. The activity provided an application of the numeracy skill of using percentages, the numerical summary of the data, rather than graphing data in the analysis of samples to make decisions on a statistical question. About 70% of students made what were considered at least moderately good predictions of the population percentages for five yes–no questions, and the correlation between predictions and explanations was 0.78.