362 resultados para Recognition accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trees are capable of portraying the semi-structured data which is common in web domain. Finding similarities between trees is mandatory for several applications that deal with semi-structured data. Existing similarity methods examine a pair of trees by comparing through nodes and paths of two trees, and find the similarity between them. However, these methods provide unfavorable results for unordered tree data and result in yielding NP-hard or MAX-SNP hard complexity. In this paper, we present a novel method that encodes a tree with an optimal traversing approach first, and then, utilizes it to model the tree with its equivalent matrix representation for finding similarity between unordered trees efficiently. Empirical analysis shows that the proposed method is able to achieve high accuracy even on the large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-rigid face alignment is a very important task in a large range of applications but the existing tracking based non-rigid face alignment methods are either inaccurate or requiring person-specific model. This dissertation has developed simultaneous alignment algorithms that overcome these constraints and provide alignment with high accuracy, efficiency, robustness to varying image condition, and requirement of only generic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

iTRAQ (isobaric tags for relative or absolute quantitation) is a mass spectrometry technology that allows quantitative comparison of protein abundance by measuring peak intensities of reporter ions released from iTRAQ-tagged peptides by fragmentation during MS/MS. However, current data analysis techniques for iTRAQ struggle to report reliable relative protein abundance estimates and suffer with problems of precision and accuracy. The precision of the data is affected by variance heterogeneity: low signal data have higher relative variability; however, low abundance peptides dominate data sets. Accuracy is compromised as ratios are compressed toward 1, leading to underestimation of the ratio. This study investigated both issues and proposed a methodology that combines the peptide measurements to give a robust protein estimate even when the data for the protein are sparse or at low intensity. Our data indicated that ratio compression arises from contamination during precursor ion selection, which occurs at a consistent proportion within an experiment and thus results in a linear relationship between expected and observed ratios. We proposed that a correction factor can be calculated from spiked proteins at known ratios. Then we demonstrated that variance heterogeneity is present in iTRAQ data sets irrespective of the analytical packages, LC-MS/MS instrumentation, and iTRAQ labeling kit (4-plex or 8-plex) used. We proposed using an additive-multiplicative error model for peak intensities in MS/MS quantitation and demonstrated that a variance-stabilizing normalization is able to address the error structure and stabilize the variance across the entire intensity range. The resulting uniform variance structure simplifies the downstream analysis. Heterogeneity of variance consistent with an additive-multiplicative model has been reported in other MS-based quantitation including fields outside of proteomics; consequently the variance-stabilizing normalization methodology has the potential to increase the capabilities of MS in quantitation across diverse areas of biology and chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The battered women’s movement in the United States contributed to a sweeping change in the recognition of men’s violence against female intimate partners. Naming the problem and arguing in favour of its identification as a serious problem meriting a collective response were key aspects of this effort. Criminal and civil laws have been written and revised in an effort to answer calls to take such violence seriously. Scholars have devoted significant attention to the consequences of this reframing of violence, especially around the unintended outcomes of the incorporation of domestic violence into criminal justice regimes. Family law, however, has remained largely unexamined by criminologists. This paper calls for criminological attention to family law responses to domestic violence and provides directions for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel techniques have been developed for the automatic recognition of human behaviour in challenging environments using information from visual and infra-red camera feeds. The techniques have been applied to two interesting scenarios: Recognise drivers' speech using lip movements and recognising audience behaviour, while watching a movie, using facial features and body movements. Outcome of the research in these two areas will be useful in the improving the performance of voice recognition in automobiles for voice based control and for obtaining accurate movie interest ratings based on live audience response analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of diagnostics of rolling element bearings, the development of sophisticated techniques, such as Spectral Kurtosis and 2nd Order Cyclostationarity, extended the capability of expert users to identify not only the presence, but also the location of the damage in the bearing. Most of the signal-analysis methods, as the ones previously mentioned, result in a spectrum-like diagram that presents line frequencies or peaks in the neighbourhood of some theoretical characteristic frequencies, in case of damage. These frequencies depend only on damage position, bearing geometry and rotational speed. The major improvement in this field would be the development of algorithms with high degree of automation. This paper aims at this important objective, by discussing for the first time how these peaks can draw away from the theoretical expected frequencies as a function of different working conditions, i.e. speed, torque and lubrication. After providing a brief description of the peak-patterns associated with each type of damage, this paper shows the typical magnitudes of the deviations from the theoretical expected frequencies. The last part of the study presents some remarks about increasing the reliability of the automatic algorithm. The research is based on experimental data obtained by using artificially damaged bearings installed in a gearbox.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delirium is a significant problem for older hospitalized people and is associated with poor outcomes. It is poorly recognized and evidence suggests that a major reason is lack of education. Nurses, who are educated about delirium, can play a significant role in improving delirium recognition. This study evaluated the impact of a delirium specific educational website. A cluster randomized controlled trial, with a pretest/post-test time series design, was conducted to measure delirium knowledge (DK) and delirium recognition (DR) over three time-points. Statistically significant differences were found between the intervention and non-intervention group. The intervention groups' DK scores were higher and the change over time results were statistically significant [T3 and T1 (t=3.78 p=<0.001) and T2 and T1 baseline (t=5.83 p=<0.001)]. Statistically significant improvements were also seen for DR when comparing T2 and T1 results (t=2.56 p=0.011) between both groups but not for changes in DR scores between T3 and T1 (t=1.80 p=0.074). Participants rated the website highly on the visual, functional and content elements. This study supports the concept that web-based delirium learning is an effective and satisfying method of information delivery for registered nurses. Future research is required to investigate clinical outcomes as a result of this web-based education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-image descriptors such as GIST have been used successfully for persistent place recognition when combined with temporal filtering or sequential filtering techniques. However, whole-image descriptor localization systems often apply a heuristic rather than a probabilistic approach to place recognition, requiring substantial environmental-specific tuning prior to deployment. In this paper we present a novel online solution that uses statistical approaches to calculate place recognition likelihoods for whole-image descriptors, without requiring either environmental tuning or pre-training. Using a real world benchmark dataset, we show that this method creates distributions appropriate to a specific environment in an online manner. Our method performs comparably to FAB-MAP in raw place recognition performance, and integrates into a state of the art probabilistic mapping system to provide superior performance to whole-image methods that are not based on true probability distributions. The method provides a principled means for combining the powerful change-invariant properties of whole-image descriptors with probabilistic back-end mapping systems without the need for prior training or system tuning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel place recognition algorithm inspired by recent discoveries in human visual neuroscience. The algorithm combines intolerant but fast low resolution whole image matching with highly tolerant, sub-image patch matching processes. The approach does not require prior training and works on single images (although we use a cohort normalization score to exploit temporal frame information), alleviating the need for either a velocity signal or image sequence, differentiating it from current state of the art methods. We demonstrate the algorithm on the challenging Alderley sunny day – rainy night dataset, which has only been previously solved by integrating over 320 frame long image sequences. The system is able to achieve 21.24% recall at 100% precision, matching drastically different day and night-time images of places while successfully rejecting match hypotheses between highly aliased images of different places. The results provide a new benchmark for single image, condition-invariant place recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial expression recognition (FER) systems must ultimately work on real data in uncontrolled environments although most research studies have been conducted on lab-based data with posed or evoked facial expressions obtained in pre-set laboratory environments. It is very difficult to obtain data in real-world situations because privacy laws prevent unauthorized capture and use of video from events such as funerals, birthday parties, marriages etc. It is a challenge to acquire such data on a scale large enough for benchmarking algorithms. Although video obtained from TV or movies or postings on the World Wide Web may also contain ‘acted’ emotions and facial expressions, they may be more ‘realistic’ than lab-based data currently used by most researchers. Or is it? One way of testing this is to compare feature distributions and FER performance. This paper describes a database that has been collected from television broadcasts and the World Wide Web containing a range of environmental and facial variations expected in real conditions and uses it to answer this question. A fully automatic system that uses a fusion based approach for FER on such data is introduced for performance evaluation. Performance improvements arising from the fusion of point-based texture and geometry features, and the robustness to image scale variations are experimentally evaluated on this image and video dataset. Differences in FER performance between lab-based and realistic data, between different feature sets, and between different train-test data splits are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at developing a planetary rover capable of acting as an assistant astrobiologist: making a preliminary analysis of the collected visual images that will help to make better use of the scientists time by pointing out the most interesting pieces of data. This paper focuses on the problem of detecting and recognising particular types of stromatolites. Inspired by the processes actual astrobiologists go through in the field when identifying stromatolites, the processes we investigate focus on recognising characteristics associated with biogenicity. The extraction of these characteristics is based on the analysis of geometrical structure enhanced by passing the images of stromatolites into an edge-detection filter and its Fourier Transform, revealing typical spatial frequency patterns. The proposed analysis is performed on both simulated images of stromatolite structures and images of real stromatolites taken in the field by astrobiologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article aims to discuss the notion of moral progress in the theory of recognition. It argues that Axel Honneth's program offers sophisticated theoretical guidance to observe and critically interpret emancipatory projects in contemporary politics based on ideas of individuality and social inclusiveness. Using a case study – the investigation, through frame analysis, of transformations in the portrayal of people with impairment as well as in public discourses on the issue of disability in major Brazilian news media from 1960 to 2008 – this article addresses three controversies: the notion of progress as a directional process; the problem of moral disagreement and conflict of interest in struggles for recognition; and the processes of social learning. By articulating empirically based arguments and Honneth's normative discussions, this study concludes that one can talk about moral progress without losing sight of value pluralism and conflict of interest.