379 resultados para Reactive power support
Resumo:
This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
In this chapter we propose clipping with amplitude and phase corrections to reduce the peak-to-average power ratio (PAR) of orthogonal frequency division multiplexed (OFDM) signals in high-speed wireless local area networks defined in IEEE 802.11a physical layer. The proposed techniques can be implemented with a small modification at the transmitter and the receiver remains standard compliant. PAR reduction as much as 4dB can be achieved by selecting a suitable clipping ratio and a correction factor depending on the constellation used. Out of band noise (OBN) is also reduced.
Resumo:
Parallel combinatory orthogonal frequency division multiplexing (PC-OFDM yields lower maximum peak-to-average power ratio (PAR), high bandwidth efficiency and lower bit error rate (BER) on Gaussian channels compared to OFDM systems. However, PC-OFDM does not improve the statistics of PAR significantly. In this chapter, the use of a set of fixed permutations to improve the statistics of the PAR of a PC-OFDM signal is presented. For this technique, interleavers are used to produce K-1 permuted sequences from the same information sequence. The sequence with the lowest PAR, among K sequences is chosen for the transmission. The PAR of a PC-OFDM signal can be further reduced by 3-4 dB by this technique. Mathematical expressions for the complementary cumulative density function (CCDF)of PAR of PC-OFDM signal and interleaved PC-OFDM signal are also presented.
Resumo:
While IS function has gained widespread attention for over two decades, there is little consensus among information systems (IS) researchers and practitioners on how best to evaluate IS function's support performance. This paper reports on preliminary findings of a larger research effort proceeds from a central interest in the importance of evaluating IS function's support in organisations. This study is the first that attempts to re-conceptualise and conceive evaluate IS function's support as a multi- dimensional formative construct. We argue that a holistic measure for evaluating evaluate IS function's support should consist of dimensions that together assess the variety of the support functions and the quality of the support services provided to end-users. Thus, the proposed model consists of two halves, "Variety" and "Quality" within which resides seven dimensions. The Variety half includes five dimensions: Training; Documentation; Data- related Support, Software-related Support; and Hardware-related Support. The Quality half includes two dimensions: IS Support Staff and Support Services Performance. The proposed model is derived using a directed content analysis of 83 studies; from top IS outlets, employing the characteristics of the analytic theory and consistent with formative construct development procedures.
Resumo:
This paper describes an autonomous navigation system for a large underground mining vehicle. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made – a technique we refer to as opportunistic localization. The paper briefly reviews absolute and relative navigation strategies, and describes an implementation of a reactive navigation system on a 30 tonne Load-Haul-Dump truck. This truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
Not all companies in Australia are amenable to a winding up order pursuant to the Corporations Act 2001 (Cth). The Supreme Court of New South Wales has previously dealt with such winding up applications by apparently focusing on the inherent jurisdiction of the court to consider whether the court has jurisdiction to firstly consider the winding up application. This article proposes an original alternative paradigm: the plenary power provided to the court by s 23 of the Supreme Court Act 1970 (NSW) can be utilised to initially attract the jurisdiction of the court and subsequently the inherent jurisdiction specifically utilising the equitable “just and equitable” ground is available to the court to consider and make such a winding up order if appropriate. Variation of such a paradigm may also be available to the court when considering the inherent jurisdiction in relation to corporation matters more generally.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systems-based decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
Many airports around the world are diversifying their land use strategies to integrate non-aeronautical development. These airports embrace the “airport city” concept to develop a wide range of commercial and light industrial land uses to support airport revenues. The consequences of this changing urban form are profound for both airport and municipal planners alike and present numerous challenges with regard to integration of airport and regional planning. While several tools exist for regional planning and airport operational planning, no holistic airport landside and regional planning tool exist. What is required is a planning support system that can integrate the sometimes conflicting stakeholder interests into one common goal for the airport and the surrounding region. This paper presents a planning support system and evaluates its application to a case study involving Brisbane Airport and the South East Queensland region in Australia.
Resumo:
Indigenous men’s support groups are designed to empower men to take greater control and responsibility for their health and wellbeing. They provide health education sessions, counselling, men’s health clinics, diversionary programs for men facing criminal charges, cultural activities, drug- and alcohol-free social events, and advocacy for resources. Despite there being ~100 such groups across Australia, there is a dearth of literature on their strategies and outcomes. This paper is based on participatory action research involving two north Queensland groups which were the subject of a series of five ‘phased’ evaluative reports between 2002 and 2007. By applying ‘meta-ethnography’ to the five studies, we identified four themes which provide new interpretations of the data. Self-reported benefits included improved social and emotional wellbeing, modest lifestyle modifications and willingness to change current notions of ‘gendered’ roles within the home, such as sharing housework. Our qualitative research to date suggests that through promoting empowerment, wellbeing and social cohesion for men and their families, men’s support groups may be saving costs through reduced expenditure on health care, welfare, and criminal justice costs, and higher earnings. Future research needs to demonstrate this empirically.
Resumo:
Offering service bundles to the market is a promising option for service providers to strengthen their competitive advantages, cope with dynamic market conditions and deal with heterogeneous consumer demand. Although the expected positive effects of bundling strategies and pricing considerations for bundles are covered well by the available literature, limited guidance can be found regarding the identification of potential bundle candidates and the actual process of bundling. The proposed research aims at filling this gap by offering a service bundling method complemented by a proof-of-concept prototype, which extends the existing knowledge base in the multidisciplinary research area of Information Systems and Service Science as well as providing an organisation with a structured approach for bundling services.
Resumo:
This paper investigates the possibility of power sharing improvements amongst distributed generators with low cost, low bandwidth communications. Decentralized power sharing or power management can be improved significantly with low bandwidth communication. Utility intranet or a dedicated web based communication can serve the purpose. The effect of network parameter such line impedance, R/X ratio on decentralized power sharing can be compensated with correction in the decentralized control reference quantities through the low bandwidth communication. In this paper, the possible improvement is demonstrated in weak system condition, where the micro sources and the loads are not symmetrical along the rural microgrid with high R/X ratio line, creates challenge for decentralized control. In those cases the web based low bandwidth communication is economic and justified than costly advance high bandwidth communication.
Resumo:
Obese children move less and with greater difficulty than normal-weight counterparts but expend comparable energy. Increased metabolic costs have been attributed to poor biomechanics but few studies have investigated the influence of obesity on mechanical demands of gait. This study sought to assess three-dimensional lower extremity joint powers in two walking cadences in 28 obese and normal-weight children. 3D-motion analysis was conducted for five trials of barefoot walking at self-selected and 30% greater than self-selected cadences. Mechanical power was calculated at the hip, knee, and ankle in sagittal, frontal and transverse planes. Significant group differences were seen for all power phases in the sagittal plane, hip and knee power at weight acceptance and hip power at propulsion in the frontal plane, and knee power during mid-stance in the transverse plane. After adjusting for body weight, group differences existed in hip and knee power phases at weight acceptance in sagittal and frontal planes, respectively. Differences in cadence existed for all hip joint powers in the sagittal plane and frontal plane hip power at propulsion. Frontal plane knee power at weight acceptance and sagittal plane knee power at propulsion were significantly different between cadences. Larger joint powers in obese children contribute to difficulty performing locomotor tasks, potentially decreasing motivation to exercise.
Resumo:
Employees are vital assets for an enterprise and therefore need to be valued by their employers. Employers can create a safe and reduced stress environment to work; managers thus provide organizational support through their managerial role by caring for their subordinates’ well-being and by providing work advisory. By providing the managerial support to the employees, organizations can reduce costs and increase productivity. Past research has investigated the role of organizational support on stress as a single model either moderating or mediating role. The previous findings were also inconsistent. The purpose of this study was to test both the mediating and the moderating effect of the perceived managerial support on role stressors and psychological outcomes. This study used 380 participants taken from several small firms in Thailand. The results confirmed the mediation role of perceived managerial support, but not the moderation effect.